MONITORING THE DESERT ENVIRONMENT FROM SPACE: EXAMPLES FROM THE ARAB REGION

Farouk El-Baz
Center for Remote Sensing, Boston University, USA

Keywords: Digital Imaging, Landsat, Thematic Mapper, SPOT, Radar Imaging, Shuttle Imaging Radar, Radarsat, Nile Delta Region.

Contents

1. Introduction
2. Images from Space
 2.1 Digital Imaging
 2.1.1 Landsat
 2.1.2 Thematic Mapper
 2.1.3 SPOT
 2.2 Radar Imaging
 2.2.1 Shuttle Imaging Radar
 2.2.2 Radarsat
 2.2.3 Earth Resources Satellites
 2.2.4 High Resolution Systems
3. Geographic Information Systems
4. Monitoring Desert Environments
 4.1 Winds of the Sahara
 4.2 Dunes in Western Egypt
 4.3 Dry Water Channels
 4.4 Archaeological Evidence
 4.5 Relationship of Water to Sand
 4.6 Implications to Groundwater
 4.7 Ancient Rivers in Arabia
 4.8 Detection of Change
 4.8.1 Nile Delta Region
 4.8.2 Gulf War Effects
5. Conclusion
Acknowledgements
Glossary
Bibliography
Biographical Sketch

Summary

Photography of the Earth from space has greatly benefited ecological and environmental sciences by allowing the study and analysis of large regions. Because the same region may be imaged at different times, the space-borne data are particularly useful in monitoring environmental changes. This contribution deals with examples in arid regions with emphasis on the largest desert belt in the world, including the Great Sahara of North Africa and the Arabian Peninsula. The used examples are from the author's
experience of scientific research during the past 25 years in this desert belt.

The advent of digital imaging from space allowed the use of information technology methods to extract important environmental characteristics and establish their change in space and time. Changes due to both natural causes and activities of mankind can be identified in digital images using computer hardware and software.

The American Landsat system and the French SPOT acquire repeat coverage of much of the desert landscapes with resolutions from 30 to 10 meters, respectively. Furthermore, radar waves beamed from space penetrate the thin sand cover in desert regions to reveal buried courses of ancient rivers, which were active during humid episodes in the geological past.

Discussed examples include: (1) establishing the wind pattern in the Great Sahara from the orientation of linear dunes; (2) deciphering the origin of desert sand by flowing surface water that deposited the sand in inland depressions in the Western Desert of Egypt; (3) unveiling the channels that the ancient rivers carved in the landscape of North Africa; (4) correlating these past events with the archaeological record; (5) determining the interplay between water and wind in the open desert; (6) establishing the implication of these space-borne observations to groundwater exploration; (7) deciphering a similar setting displayed by a channel of an ancient river in the northern part of the Arabian Peninsula; and (8) using satellite images to establish changes in agricultural patterns in the Nile Delta as well as disturbances to the desert surface in Kuwait due to the Gulf War.

These examples make it clear that satellite images afford a better understanding of the origin and evaluation of the desert environment. They are also ideal for monitoring the natural and man-made changes in space and time. Similar methodologies can be applied to other features of the Earth.

1. Introduction

During the past three decades, ecological sciences greatly benefited from space technology. As astronauts and cosmonauts began to train their cameras toward the Earth, the value of the unique perspective from orbit became clear. Most observers ascribe the popularity of the “environmental movement” to the first image of the Earth above the lunar horizon. That view was captured by the Apollo 8 astronauts as they circled the Moon in December 1968 and depicted an earthrise above the Moon’s surface. The life-giving uniqueness and fragile appearance of a globe without country borders entered the consciousness of people worldwide. Throughout the Apollo program, and until its end in 1972, the astronauts continued to describe and photograph the Earth in fascinating detail.

Since that time, the Earth has been the object of intensive exploration from space. It was realized that photographs from space are ideal for monitoring the changes to the environment in space and time. This became particularly obvious when images of the same region could be compared to others obtained at a later time. Views from space allowed the study of global phenomena as well as local features. They also allowed the
evaluation of changes due to: (a) natural processes such as droughts, forest fires, floods, locust infestations, earthquakes, etc.; and (b) activities of mankind, such as agriculture, deforestation, land degradation due to organizing, etc.

Nowhere were these factors as important as they were to the understanding of the origin and evaluation of arid landforms of the Earth (El-Baz, 1988). The reason being that the desert remained the least known of all the features of the earth because:

- Earth sciences began in Europe, which is the only continent that does not have a desert. Therefore, the fathers of geology did not write about arid landforms and those who came after them followed suit. To this day, one can find a textbook about the Earth without a single chapter on the desert.
- The desert is vast and harsh, therefore, few researchers venture into it because of the immensity of scale and the dangers of desert travel.
- In the course of field work, geologists seek solid rock in situ, in place, to sample for later study. Most desert surfaces, however, are covered by transported mixtures of rock fragments, soil and sand. Therefore, there is little for the conventional geologist to do in a desert.

Space photography presented a unique tool to study the deserts and monitor their environment (El-Baz, 1988). This is particularly true for of three reasons:

- Desert regions are usually free of clouds, thus, are easy to photograph from above.
- Space photographs cover large areas and allow the recognition of regional patterns, which is important in the case of extensive deserts.
- Due to the lack or scarcity of vegetation cover, a space photograph can be considered a map of the chemical composition of the exposed rocks, soils and sands.

Figure 1: Mosaic of NOAA satellite images of the desert belt that includes the Arab region. The bright red color represents natural vegetation in the Atlas Mountains of
Morocco. The dark band in the lower part is due to natural vegetation in sub-Saharan Africa. Note the linear patterns of dunes in both the Great Sahara and the Arabian Peninsula.

Based on the above, the first part of this contribution includes a description of the imaging systems whose data are most applicable to studying and monitoring the arid lands of the Earth. The second part includes examples of work by the author in utilizing satellite images in learning about the Arab region, which represents the largest desert belt in the world (Figure 1).

2. Images from Space

Increasingly detailed photographs from space resulted from advancements in the technology of remote sensing during the past three decades. Remote sensing is simply defined as investigating an object or a phenomenon from a distance, such as by imaging the surface of the Earth from a spacecraft and probing its subsurface with radar waves. Photographing the Earth from space began with the manned Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle missions (El-Baz, 1998). Photographs on these missions were mostly obtained by cameras aimed by astronauts at important features or significant phenomena. In addition, the unmanned Landsat program introduced digital imaging from space in 1972 (Short et al., 1976). In this case, the image data are transmitted to ground receiving stations for processing and distribution to the analysts.

![Image of Landsat sensors and Earth](image-url)
In the acquisition of data from Earth orbit, unmanned and manned spacecraft are planned to fly in high, medium, or low orbits. The highest orbits are left to the unmanned weather satellites, such as Meteosat of the European Space Agency (ESA). These are propelled to a height of 36,000 kilometers above the Earth. At this altitude, their motion is equivalent in speed to the rotation of the Earth about its axis. Such satellites are termed geostationary, and they remain above the same point on the Earth to acquire and transmit repetitive images as frequently as hourly. At the low end, most manned missions are placed in orbits below 300 km, to a minimum of 150 km above the Earth. For example, the Space Shuttle’s operational altitude is about 200 km. From this altitude, images show greater detail such as those of the Large Format Camera which produced images with 10 meter resolution (El-Baz, 1998).

Intermediate orbits, from 700 to 1000 km above the Earth, are left to most unmanned imaging satellites. For example, the polar-orbiting satellites of the National Oceanic and Atmospheric Administration (NOAA) fly at altitudes of 835 to 870 km; the near-polar orbits of Landsat (Figure 2) reach a maximum altitude of 920 km above the Earth; and the French digital imaging satellites, Systeme Pour l’Observation de la Terre (SPOT) operate from an altitude of 830 km or less. Images collected from these altitudes provide greater local detail than is possible from the high-altitude satellites (El-Baz, 1998).

The following section is a review of the systems that have acquired the most extensive and useful photographs of the Earth from space. These include digital imaging systems and radar imaging systems. At the end of the section, an example is given of the new operational systems that acquire high resolution images of the Earth from orbit.

2.1 Digital Imaging

2.1.1 Landsat

Systematic imaging of the Earth in digital form was introduced by the Earth Resources Technology Satellite (ERTS-1) that was launched on 23 July 1972; the program was later named Landsat (Figure 2). Two other satellites from the same series were launched at intervals of a few years and carried a Multi-Spectral Scanner (MSS) and a return beam vidicon.

The Landsat MSS produced images representing four different bands of the electromagnetic spectrum (Figure 3) with a ground resolution of 80 meters. The MSS onboard Landsat 1, 2 and 3 covered a 185-km swath in four wavelength bands: green (0.5 to 0.6 µm, micron), red (0.6 to 0.7 µm), and two in the near infrared (0.7 to 0.8 µm and 0.8 to 1.1 µm). These bands were designated as bands 4, 5, 6, and 7 respectively (Lillesand and Kiefer, 1994).

Combination of bands of MSS imagery were selected for each interpretive use. Bands 4 (green) and 5 (red) were designated for detecting cultural features such as urban areas, roads, gravel pits, and quarries. In such areas, band 5 had better atmospheric penetration, providing a higher contrast image. In areas of deep, clear water, greater water penetration was achieved with band 4.
Figure 3: Illustration of the continuous sequence of energy based on wavelength or frequency, which constitutes the electromagnetic spectrum. Only the energy range labeled “visible” is detectable to the human eye. Especially designed sensors are required to detect and image wavelengths in other parts of the spectrum.

The near-infrared bands 6 and 7 clearly delineated water bodies. Since the energy of near-infrared wavelengths penetrates only a short distance into water, where it is absorbed with very little reflection, surface water features have a very dark tone in bands 6 and 7.

Wetlands with standing water or wet organic soil also have a dark tone in bands 6 and 7, as do asphalt-surfaced pavements and wet bare soil areas (Lillesand and Kiefer, 1994). These two near-infrared bands measured the reflectance of the Sun’s rays outside the sensitivity of the human eye (visible range). These bands were useful in agricultural studies, because of the high reflectance of vegetative matter (El-Baz, 2000).

False-color images are produced when these four bands are combined. For example, in the most popular combination of bands 4, 5 and 7, the red color is assigned to the near-infrared band number 7 (and green and blue to bands 4 and 5 respectively). Vegetation appears red because plant tissue is one of the most highly reflective materials in the infrared portion of the spectrum, and thus, the healthier the vegetation, the darker the red on such images.

TO ACCESS ALL THE 37 PAGES OF THIS CHAPTER, Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx
Bibliography

Bagnold R. A. (1941). *The Physics of Blown Sand and Desert Dunes*, 265 pp. London: Methuen. [This is a definitive treatment of particle transport by the wind and the mathematical equations that explain this action.]

El-Baz F. (1988). Origin and evolution of the desert. *Interdisciplinary Science Reviews* 13, 331-347. [In this paper, the author corrects the misconception that the desert is man-made and shows how arid landforms originated by the lack or scarcity of rain.]

El-Baz F. (1998). *The Arab World and Space Research: Where Do We Stand?* 70 pp. Abu Dhabi, United Arab Emirates: The Emirates Center for Strategic Studies and Research. [This is a book that summarizes the methodologies of satellite imaging and describes a plan for “Desertsat,” a satellite to be dedicated to study of the desert.]

Biographical Sketch

Dr. Farouk El-Baz is Research Professor and Director of the Center for Remote Sensing at Boston University. He received his B.Sc. (1958) in chemistry and geology from Ain Shams University, Cairo, Egypt; his M.S. (1961) in geology from the Missouri School of Mines and Metallurgy, Rolla, Missouri; and his Ph.D. (1964) in geology from the University of Missouri, after performing research at the Massachusetts Institute of Technology, Cambridge, Massachusetts (1962–1963). He taught geology at Egypt’s Assiut University from 1958–1960, and at the University of Heidelberg in Germany between 1964–1966. In 1989, Dr. El-Baz received an honorary Doctor of Science degree from the New England College, Henniker, New Hampshire. Between 1967 and 1972, Dr. El-Baz participated in the Apollo program as Supervisor of Lunar Science Planning at Bellcomm, Inc. of Bell Telephone Laboratories in Washington, D.C. During these six years, he was Secretary of the Site Selection Committee for the
Apollo lunar landings, Chairman of the Astronaut Training Group, and Principal Investigator for Visual Observations and Photography. From 1973 until 1983, he established and directed the Center for Earth and Planetary Studies at the National Air and Space Museum, Smithsonian Institution, Washington, D.C. In 1975, Dr. El-Baz was selected by NASA to be Principal Investigator for Earth Observations and Photography on the Apollo-Soyuz Test Project. This was the first joint American-Soviet space mission. From 1982 to 1986 he was Vice President for International Development and for Science and Technology at Itek Optical Systems of Lexington, Massachusetts.

Dr. El-Baz has served on the Steering Committee of Earth Sciences of the Smithsonian Institution, the Arid and Semi-Arid Research Needs panel of the National Science Foundation, the Advisory Committee on Extraterrestrial Features of the U.S. Board of Geographic Names, and the Lunar Nomenclature Group of the International Astronomical Union. In 1979 he coordinated the first visit by US scientists to the desert regions of northwestern China. In 1985 he was elected Fellow of the Third World Academy of Sciences and represents the Academy at the Non-Governmental Organizations Unit of the Economic and Social Council of the United Nations. He also served as Science Advisor (1978-1981) to the late Anwar Sadat, President of Egypt. He is known for pioneering work in the applications of space photography to the understanding of arid terrain, particularly the location of groundwater resources. Based on the analysis of space photographs, his recommendations have resulted in the discovery of groundwater resources in the Sinai Peninsula, the Western Desert of Egypt, and in arid terrains in northern Somalia and the Red Sea Province of Eastern Sudan. Furthermore, during the past twenty years, he contributed to interdisciplinary field investigations in all major deserts of the world. At present, his research objectives include applications of remote sensing technology to the fields of archaeology, geography, and geology.

Dr. El-Baz is President of the Arab Society of Desert Research and the recipient of numerous honors and awards, including: NASA’s Apollo Achievement Award, Exceptional Scientific Achievement Medal, and Special Recognition Award; the University of Missouri Alumni Achievement Award for Extraordinary Scientific Accomplishments; the Certificate of Merit of the World Aerospace Education Organization; and the Arab Republic of Egypt Order of Merit-First Class. He also received the 1989 Outstanding Achievement Award of the Egyptian American Organization, the 1991 Golden Door Award of the International Institute of Boston., and the 1992 Award for Public Understanding of Science and Technology of the American Association for the Advancement of Science. In 1995, he received the Award for Outstanding Contributions to Science and Space Technology of the American-Arab Anti-Discrimination Committee, and the Achievement Award of the Egyptian American Professional Society. He also received the 1996 Michael T. Halbouty Human Needs Award of the American Association of Petroleum Geologists. In 1999, the Geological Society of America established “The Farouk El-Baz Award for Desert Research” to annually encourage and reward arid land studies.