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Summary 

 

This chapter focuses on the dynamics in a neighborhood of the five equilibrium points 

of the Restricted Three-Body Problem. The first section is devoted to the discussion of 

the linear behavior near the five points. Then, the motion in the vicinity of the collinear 

points is considered, discussing the effective computation of the center manifold as a 

tool to describe the nonlinear dynamics in an extended neighborhood of these points. 

This technique is then applied to the Earth-Moon case, showing the existence of 

periodic and quasi-periodic motions, including the well-known Halo orbits.  

 

Next, the dynamics near the triangular points is discussed, showing how normal forms 

can be used to effectively describe the motion nearby. The Lyapunov stability is also 

considered, showing how the stability is proved in the planar case, and why it is not 

proved in the spatial case. This section also discusses how to bound the amount of 

diffusion that could be present in the spatial case. Finally, in the last section we focus on 

the effect of perturbations. More concretely, we mention the Elliptic Restricted Three-

Body Problem, the Bicircular problem and similar models that contain periodic and 

quasi-periodic time-dependent perturbations. 

 

1. Introduction 

 

Let us consider two point masses (usually called primaries) that attract each other 

according to the gravitational Newton‟s law. Let us assume that they are moving in 

circular orbits around their common center of mass, and let us consider the motion of an 

infinitesimal particle (here, infinitesimal means that its mass is so small that we neglect 

the effect it has on the motion of the primaries and we only take into account the effect 
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of the primaries on the particle) under the attraction of the two primaries. The study of 

the motion of the infinitesimal particle is what is known as the Restricted Three-Body 

Problem, or RTBP for short. 

 

To simplify the equations of motion, let us take units of mass, length and time such that 

the sum of masses of the primaries, the gravitational constant and the period of the 

motion of the primaries are 1, 1 and 2  respectively. With these units the distance 

between the primaries is also equal to 1. We denote as   the mass of the smaller 

primary (the mass of the bigger is then 1 ),  1
2

0, . 

 

The usual system of reference is defined as follows: the origin is taken at the center of 

mass of the primaries, the X -axis points to the bigger primary, the Z -axis is 

perpendicular to the plane of motion, pointing in the same direction as the vector of 

angular momentum of the primaries with respect to their common center of mass, and 

the Y -axis is defined such that we obtain an orthogonal, positive-oriented system of 

reference. With this we have defined a rotating system of reference, that is usually 

called synodic. In this system, the primary of mass   is located at the point  1,0,0  

and the one of mass 1  is located at  ,0,0 , see Figure 1. 

 

 
 

Figure 1. The five equilibrium points of the RTBP. The graphic corresponds to the 

Earth-Moon case. The unit of distance is the Earth-Moon distance, and the unit of mass 

is the total mass of the system. In these units, the mass of the Moon is 0.01215  . 

 

Defining momenta as XP X Y  , YP Y X   and ZP Z , the equations of motion can 

be written in Hamiltonian form. The corresponding Hamiltonian function is  

 

 2 2 2

1 2

1 1
,

2
X Y Z X YH P P P YP XP

r r

 
        (1) 
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being  
22 2 2

1r X Y Z     and  
22 2 2

2 1r X Y Z      (see, for instance, 

Szebehely (1967) for details). 

 

It is well-known that the system defined by (1) has five equilibrium points. Two of them 

can be found as the third vertex of the two equilateral triangles that can be formed using 

the two primaries as vertices (usually called 4,5L  or Lagrangian points). The other three 

lie on the X -axis and are usually called 1,2,3L  or Eulerian points (see Figure 1). A more 

detailed discussion on the existence of these points can be found in many textbooks, like 

Szebehely (1967). Note that “our” 1L  and 2L  are swapped with respect to that 

reference. This lack of agreement for the definition of 1,2L  is rather common in the 

literature: usually, books on celestial mechanics use the same notation as in Szebehely 

(1967) but books on astrodynamics follow the convention we use here.  

 

In this chapter we will focus on the dynamics around these points, especially for 

examples from the Solar system. We will also comment on the main perturbations that 

appear in astronomical and astronautical applications and their effects. 

 

2. Linear Behavior 

 

In this section we will first discuss the linearization of the dynamics around the five 

equilibrium points. The presentation is done in a way that prepares the following 

sections. 

 

2.1. The Collinear Points 

 

Let us define, for 1,2,j   j  as the distance from the smaller primary (the one of mass 

 ) to the point jL , and 3  as the distance from the bigger primary to 3L . It is well-

known (see, for instance, Szebehely (1967) that j  is the only positive solution of the 

Euler quintic equation,  

 

   

         

5 4 3 2

5 4 3 2

3 3 3 3 3

3 3 2 2 0, 1,2,

2 1 2 1 2 1 1 0,

j j j j j j            

                
 

 

where the upper sign in the first equation is for 1L  and the lower one for 2L . These 

equations can be solved numerically by the Newton method, using the starting point 

 
1 3

3  for the first equation ( 1,2L  cases), and 7
12

1   for the second one ( 3L  case). 

 

The next step is to translate the origin to the selected point jL . Moreover, since in 

Section 3 we will need the power expansion of the Hamiltonian at these points, we 

therefore perform a suitable scaling in order to avoid fast growing (or decreasing) 

coefficients. The idea is to have the closest singularity (the body of mass   for 1,2L  or 

the one of mass 1  for 3L ) at distance 1 (see Richardson, 1980b). As the scalings are 
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not symplectic transformations, let us consider the following process: first we write the 

differential equations related to (1) and then, on these equations, we perform the 

following substitution 

 

,

,

,

j j

j

j

X x

Y y

Z z

  

 

 

 

 

where the upper sign corresponds to 1,2L , the lower one to 3L  and 1 11     , 

2 21      and 3 3   . Note that the unit of distance is now the distance from the 

equilibrium point to the closest primary. 

 

In order to expand the nonlinear terms, we will use that  

 

     
2 2 2

0

1 1
n

n

n

Ax By Cz
P

D D Dx A y B z C





    
    

       
 , 

 

where A , B , C , D , are real numbers with 
2 2 2 2D A B C   , 2 2 2 2x y z     and 

nP  is the polynomial of Legendre of degree n . After some calculations, one obtains that 

the equations of motion can be written as  

 

   

   

 

2

3

2

3

2

3

2 1 2 ,

2 1 ,

,

n

n n

n

n

n n

n

n

n n

n

x
x y c x c P

x

x
y x c y c P

y

x
z c z c P

z







 
       

  

 
       

  

 
     

  







 (2) 

 

where the left-hand side contains the linear terms and the right-hand side contains the 

nonlinear ones. The coefficients  nc   are given by  

 

     
 

 

1

13

11
1 1 , for , 1,2

1

n
n n j

n jn

j j

c L j





  
       
  
 

 

 

 
 

 

1

3
313

3 3

1
1 , for

1

n n

n n
c L





  
   

    

. 

 

In the first equation, the upper signs are for 1L  and the lower one for 2L . Note that these 

equations can be written in Hamiltonian form, by defining the momenta xp x y  , 
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yp y x   and zp z . The corresponding Hamiltonian is then given by  

 

   2 2 2

2

1
.

2

n

x y z x y n n

n

x
H p p p yp xp c P



 
         

 
  (3) 

 

The nonlinear terms of this Hamiltonian can be expanded by means of the well-known 

recurrence of the Legendre polynomials nP . For instance, if we define  

 

 , , n

n n

x
T x y z P

 
   

 
, (4) 

 

then, it is not difficult to check that nT  is a homogeneous polynomial of degree n  that 

satisfies the recurrence  

 

 2 2 2

1 2

2 1 1
,n n n

n n
T xT x y z T

n n
 

 
     (5) 

 

starting with 0 1T   and 1T x . 

 

The linearization around the equilibrium point is given by the second order terms of the 

Hamiltonian (linear terms must vanish) that, after some rearranging, take the form,  

 

 2 2 2 2 2 22 2
2 2

1 1

2 2 2 2
x y x y z

c c
H p p yp xp c x y p z        . (6) 

 

It is not difficult to derive intervals for the values of  2 2c c   when  1
2

0,  (see 

Figure 2). As 2 0c   (for the three collinear points), the vertical direction is an harmonic 

oscillator with frequency 2 2c  . Now let us focus on the planar directions, i.e.,  

 

 2 2 2 22
2 2

1

2 2
x y x y

c
H p p yp xp c x y      , (7) 

 

where, for simplicity, we keep the name 2H  for the Hamiltonian. 

 

Now, let us define the matrix M  as 2Hess( )HJ ,  

 

2

2

0 1 1 0

1 0 0 1
M .

2 0 0 1

0 1 0

c

c

 
 


 
 
 

  

 (8) 
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The characteristic polynomial is      4 2 2

2 2 22 1 2p c c c         . Calling 2   , 

we have that the roots of   0p    are given by  

 
2 2

2 2 2 2 2 2

1 2

2 9 8 2 9 8
, .

2 2

c c c c c c     
     

 

As  1
2

0,  we have that 2 1c   that forces 1 0   and 2 0  . This shows that the 

equilibrium point is a center center saddle. Thus, let us define 1  as 1  and 1  as 

2 . For the moment, we do not specify the sign taken for each value (this will be 

discussed later on). 

 

 
 

Figure 2. Values of  2c   (vertical axis), for  1
2

0,  (horizontal axis), for the cases 

1,2,3L . 

 

Now, we want to find a symplectic linear change of variables casting (7) into its real 

normal form (by real we mean with real coefficients) and, hence, we will look for the 

eigenvectors of matrix (8). As usual, we will take advantage of the special form of this 

matrix: if we denote by M  the matrix 4M I , then  

 

2 2

2

2 01
, , .

01

c

c



 



    
            

A I
M A B

B A
 

 

Now, the kernel of M  can be found as follows: denoting as 
T

T T

1 2
  w w  the elements 

of the kernel, we start solving  2

1 B A w 0  and then 2 1 w Aw . Thus, the 



CELESTIAL MECHANICS - The Lagrangian Solutions - Àngel Jorba 
 

 

Encyclopedia of Life Support Systems (EOLSS) 

eigenvectors of M  are given by  
T

2 2 3

2 2 22 , 2 1, 2 1, 1 2c c c             , 

where   denotes the eigenvalue.  

 

Let us consider now the eigenvectors related to 1 . From   0p   , we obtain that 1  

verifies  

 

   4 2 2

1 2 1 2 22 1 2 0.c c c         

 

We also apply 
11     to the expression of the eigenvector and, separating real and 

imaginary parts as 
1 1

1  u v  we obtain  

 

 
1

T
2 2

1 2 1 20, 2 1, 2 1,0c c       u  

 

  
1

T
3

1 1 2 12 ,0,0 1 2 .c      v  

 

Now, let us consider the eigenvalues related to 1 , 

 

  
1

T
2 2 3

2 2 22 , 2 1, 2 1, 1 2c c c            u , 

  
1

T
2 2 3

2 2 22 , 2 1, 2 1, 1 2c c c             v  

 

We consider, initially, the change of variables  
1 1 1 1
, , ,   C u u v v . To know 

whether this matrix is symplectic or not, we check 
T C JC J . It is a tedious 

computation to see that  

 

1

1

T
0

,
0

d

d





  
    

    

0 D
C JC D

D 0
. 

 

This implies that we need to apply some scaling on the columns of C  in order to have a 

symplectic change. The scaling is given by the factors  

 

     
1 1

2 2 2 2

1 2 1 2 2 1 2 1 2 22 4 3 4 5 6 , 4 3 4 5 6 .d c c c d c c c                

 

Thus, we define 
11s d  and 

12s d . As we want the change to be real, we have to 

require 
1

0d   and 
1

0d  . It is not difficult to check that this condition is satisfied for 

1
2

0     in all the points 1,2,3L , if 1 0   and 1 0  . 

 

To obtain the final change, we have to take into account the vertical direction  , zz p : to 

put it into real normal form we use the substitution  
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2

2

1
, z zz z p p


. 

 

This implies that the final change is given by the symplectic matrix  

 

     

1

1 1 2

2 2 2
2 1 2 2

1 2 1

2

2 2 2
2 1 2 2

1 2 1

3 3 3
2 2 1 2 1

1 1 2

22 2

2 1 2 1 2 1

1

2 1 2 1 2 1

1 2 1 2 1 2

2

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

s s s

c c c

s s s

c c c

s s s

c c c

s s s

 

        



        

           

 
 
 
 
 
 
 
 
 
 
  

C  (9) 

 

that casts Hamiltonian (6) into its real normal form,  

 

   2 2 2 21 2
2 1

2 2
x y zH xp y p z p

 
       (10) 

 

where, for simplicity, we have kept the same name for the variables. Later on we will 

use a complex normal form for 1H  because it will simplify the computations. This 

complexification is given by  

 

3 32 2
1

3 32 2
1

11
, , ,

2 2

11
, , ,

2 2
x y z

q pq p
x q y z

q pq p
p p p p

  
  

  
  

 (11) 

 

and it puts (10) into its complex normal form,  

 

2 1 1 1 1 2 2 2 3 31 1 ,H q p q p q p         (12) 

 

being 1 , 1  and 2  real (and positive) numbers. 

- 

- 

- 
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