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Summary 
 
Variability is an unavoidable element of most biological processes. Sometimes it is of 
interest in itself; sometimes we need to disentangle it from effects of interest. 
 
A diverse and rich theory has been developed to handle the many types of variability 
which occur. Sometimes our aim is to summarize a set of data; other times we want to 
draw inferences from data. These may include testing hypotheses about the how the 
data were generated and estimating parameters of interest. This article discusses three 
areas, designed experiments, spatial processes and multivariate analysis, in which 
distinct bodies of theory have evolved. Some other areas, including variation in time 
and genetic variation, are discussed more briefly. 
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1. Introduction 
 
Variability is an intrinsic element in most biological systems and processes. For 
example, the weights of mice caught in traps will vary from individual to individual; 
trees in a woodland will not be located in a completely systematic way. Data will often 
be subject to measurement error, which may sometimes be significant relative to other 
sources of variability. 
 
The role of biometry is to describe the essential characteristics of this variability, or to 
enable us to disentangle effects of interest from the variability. We may simply wish to 
have a convenient summary of a large set of data; or we may wish to establish whether 
the sizes of observed differences between treatments can be explained as a result of 
random variation or whether they are better explained as due to systematic differences 
between treatments. More usefully we may wish to estimate the underlying systematic 
differences and to establish how accurate the estimates are. In these respects the practice 
of biometry does not differ greatly from the application of statistics in other areas, 
although biometry sometimes also refers to deterministic mathematical modeling of 
biological systems. 
 
Over time a distinction has developed between the application of statistics in medicine 
and epidemiology, where it is referred to as biostatistics, and other applications of 
biometry. This article focuses on biometry as applied in these other areas, such as 
ecology, agriculture, horticulture, forestry, etc. 
 
Biometry originally developed as the summarization and interpretation of large bodies 
of biological data. However in the first half of the last century Sir Ronald Fisher 
working at the Rothamsted Experimental Station in England recognized that methods 
applicable to small data sets needed to be developed for the analysis of much of the data 
which he encountered there. His work revolutionized the practice of biometry. 
 
Many of the problems in the application of biometrical concepts relate to the complexity 
of the random structure underlying the data. This can be induced by the way in which 
the data was collected, or by the intrinsic properties of the process being investigated. 
Examples of the first include the way in which a field experiment has been laid out or 
the structure of a sampling scheme used. Examples of the latter include measurements 
made on a random processes operating over space or time, and multivariate data where 
several different measurements are made on the same individual. Methods for handling 
complexity of random structure form the underlying theme of this article. Failure to take 
proper account of this structure invalidates statistical inferences drawn from the data, 
and can mean that important effects are overlooked; that negligible or non-existent 
effects are judged to be important; or that the way in which a process operates is 
misunderstood. 
 
Developments in computing continue to change our perceptions of what is meant by 
“large” and “small” datasets, and to increase the complexity of the models for random 
structure which can be handled. However, from the point of view of making statistical 
inferences, “small” relates to the number of units for which data is available, rather than 
the actual volume of data. 
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2. Inference 
 
Although biometry often involves data sets with quite complex structures, the analysis 
of the data usually has some or all of only three elements, choosing a good model, 
testing hypotheses, and estimating various quantities. To be useful our estimates will 
also include some measure of their accuracy. 
 
2.1. Hypothesis testing 
 
Statistical hypothesis testing addresses the issue of whether or not the observed data are 
consistent with some assumption about the way they were generated. It can never prove 
an hypothesis, only lead us either to reject an hypothesis, or to conclude that the data do 
not give us any good reason to reject it. In the latter case we might conclude that for 
practical purposes the data are consistent with the hypothesis or else that the data are 
insufficient to say anything very useful about it. 
 
For example, suppose we have two groups each of six mice, and the weights in grams of 
the mice in one group are (62.2, 61.9, 54.7, 49.3, 45.5, 58.2) and in the other are (34.5, 
49.8, 48.9, 49.5, 46.0, 48.5). The mice in the first group seem to be bigger on average 
than those in the second, but there is some overlap, so we might wish to test whether the 
two groups can be considered to be drawn from the same source. The first step is to 
choose a test statistic which will summarize the observed differences between the 
groups. A natural choice is the difference between the average weights of the mice in 
the two groups, although there are many possible alternatives. We have no a priori 
reason to suppose that the means are identical, and we want to see if the observed 
difference is consistent with the sort of random variation one might expect if the two 
groups were obtained in the same way. The means for the two groups are 55.3 and 46.2, 
and the difference is 9.1. A conceptually simple test is a randomization test where we 
take the twelve weights and consider all possible ways of dividing them into two groups 
of six. There are 924 ways in all. We can then see how many of these divisions lead to a 
difference between the first and second groups, which is greater than or equal to 9.1. In 
this case there are 17 such divisions, which is 1.84% of the total. However, 
interchanging the two groups, there will also be 17 divisions in which the difference 
between the second and first groups is greater than or equal to 9.1. So if we were to 
repeatedly select two groups of six mice at random from the twelve mice we would get 
a difference as extreme as that observed 3.7% of the time. We have to decide whether 
3.7% is sufficiently small as to make us doubt that the data have arisen from some 
mechanism equivalent to this. We can quote 3.7% as summarizing the evidence against 
this null hypothesis of no difference, or we can choose some essentially arbitrary 
number, 5% is a popular selection, and reject the null hypothesis if the proportion of 
randomizations giving a more extreme value than that observed is less than this. In this 
case we say that the null hypothesis is rejected at the 5% level. 
 
In all this the null hypothesis only assumes that the mice are all drawn from the same 
source. The testing procedure does not require any extraneous assumptions. It could 
equally well be applied if some other statistic than the difference between the two 
means was chosen as the basis for the test. In practice we would choose a statistic 
sensitive to the sort of departures from the null hypothesis we are interested in. For 
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example, if we expect our data to include occasional very large or small values we 
might choose the difference in the medians (the middle values) of the two groups as our 
test statistic to minimize the effect of these extreme values. Note that we have assumed 
that there is no structure in the groups of mice which we could take account of. For 
example, if we knew that three of the mice in one group were drawn from the same 
litter, we ought to take account of this in our analysis. 
 
Of course in many situations complete enumeration of the possible permutations of the 
data is impractical, but we can use a random sample of permutations instead. Often 
there is a theoretical approximation which involves quite mild assumptions. In many 
other cases the null hypothesis is more complex, so that a convenient randomization test 
may not be available. However the same principle of establishing the proportion of 
values for the test statistic more extreme than the observed value which would be 
obtained under the null hypothesis applies. 
 
The power of a statistical hypothesis test is an important concept. For a specific 
alternative to the null hypothesis, it is the probability that the null hypothesis will be 
rejected when the alternative hypothesis is true. Clearly we would like the power to be 
as large as possible. There are usually many alternative null hypotheses each with its 
own value for the power of the test. If we are interested in specific alternative 
hypotheses, comparing the power for different tests helps us to choose the most 
appropriate test for our purpose, and tells us whether the data are adequate for detecting 
the sorts of effects we are interested in. Power considerations are important in deciding 
how much data to collect, since power will increase as the sample size increases. In the 
example of comparing two populations of mice we might well decide how many to 
measure by deciding on the power we would like to have for a specific difference in the 
average weights in the two populations. 
 
2.2. Confidence Intervals 
 
In the example of the weights of two groups of mice in the previous section we may be 
more interested in estimating the difference between the average weights for the 
populations from which the groups are drawn. We can estimate this by the difference in 
the average weights for the two groups, but this is not usually of much use without some 
idea of how accurate this estimate is likely to be. 
 
For any given value we can test the hypothesis that it is equal to the difference simply 
by subtracting it from the values in the group hypothesized to have a larger mean, and 
then testing for equality at a particular significance level, as described in the previous 
section. If the hypothesis is not rejected we can say that the value for the difference 
being considered is consistent with the data. If we take all values which are judged 
consistent with the data, these values constitute a confidence region for the difference. 
In most situations such regions constitute a single interval whose upper and lower 
values define a confidence interval. 
 
In this way we have a duality between confidence intervals and hypothesis testing, since 
testing whether a parameter takes a specific value or not is equivalent to asking whether 
that value lies within a confidence region. The percentage level of the confidence 
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interval is said to be 100 minus the chosen significance level, so if the chosen 
significance level is 5% we say that we have a 95% confidence interval. 
 
2.3. Model Selection 
 
In the physical sciences theoretical considerations often dictate the choice of a 
mathematical model or equation to describe the way in which a particular data set has 
arisen. In biometry this is usually not the case. Consider modeling the growth of an 
animal which has been measured at a sequence of points in time. We might suppose that 
initially it will grow rapidly and eventually its size will plateau at some value, and we 
may be able to suggest some intuitively plausible equation to describe the growth. 
However the equation will not relate directly to the mechanisms controlling growth. Our 
choice of possible models will be governed by our purpose in collecting and analyzing 
the data. Is it simply to interpolate at times for which we do not have measurements? Is 
it to give us a method for comparing the growth of different individuals, perhaps in 
different environments? Is it to provide some reference standard for assessing whether 
the growth of other individuals in some future circumstances has been affected in some 
way? Is it to see whether the growth consists of distinct phases with different 
characteristics? Having selected a set of candidate models, our task is to see which, if 
any, give an adequate description of the data, and, if we have successfully found a good 
model, to estimate constants or parameters in the equation. 
 
We might think that it is best to choose the model which fits the data most closely. 
However this may lead to choosing a model which reflects chance peculiarities of our 
data, and does not reflect the mechanism by which the data arose. In addition, other 
things being equal, a complex model will fit our data better than a simple model, 
although the simple model may be much easier to interpret and be a more convenient 
tool for comparisons with other sets of data.  
 
For this reason statistics, such as the Akaike information criterion, have been proposed 
which are a composite of the complexity of a model and the degree to which it fails to 
fit the data, and these can be used to discriminate between different models. Complexity 
in this context refers to the number of unknown parameters which have to be estimated 
to fit the model to a set of data. Of course we often have some subject matter knowledge 
which tells which models make the most sense, and this must also be taken into account, 
so that our model will reflect a compromise between our prior knowledge, and the 
results of a formal model selection process. 
 
- 
- 
- 
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