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Summary 
 
Solvable models are discussed in connection with the representation theory of infinite 
dimensional algebras. Vertex operators, which realize representations and intertwine 
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different representations, give mathematical pictures to physical models in statistical 
mechanics and quantum field theory. 
 
1. Introduction 
 
In this article we give a survey of solvable models in statistical mechanics and quantum 
field theory. Problems in these fields of physics possess a peculiar feature. Physical 
systems in consideration have infinite degrees of freedom. For example, a magnet 
consists of a huge number of iron atoms. Each atom bears one degree of freedom.  
 
Mathematically, degrees of freedom appear as variables over which summations or 
integrations are taken. Because of such a large number of variables, it is not easy to 
obtain analytical solutions in general. However, in reality, there are plenty of interesting 
models that are exactly solvable. In this article, we take five different topics in solvable 
models, and give a brief account of known results in the case of each model. We 
consider the two-dimensional Ising model, soliton equations, the SU (2) WZNW model 
in conformal field theory, the XXZ spin chain, and the sine-Gordon model. 
 
A common feature of these models is that the systems have a large set of symmetries. In 
the limit where the degrees of freedom become infinite, the systems acquire infinite 
dimensional symmetries. Mathematically, this is understood as the situation where the 
systems can be identified with infinite dimensional representations of infinite 
dimensional algebras. Representation theory of infinite dimensional algebras such as the 
free Fermion algebra, the free Boson algebra, the affine Lie algebras, the Virasoro 
algebra and the quantum affine algebras plays essential roles in obtaining analytical 
solutions of the models. At the same time, solvable models in physics provide us with 
new problems and new methods in representation theory. We call the field of 
interactions between solvable models in physics and representation theory of infinite 
dimensional algebras INFINITE ANALYSIS. 
 
In infinite analysis, a key ingredient is the existence of the spectral variable. Operators 
depending on the spectral variable are called vertex operators. Physically, the spectral 
variable appears as a space (or momentum) variable. Therefore, vertex operators are 
nothing but a kind of field operators. However, it is essential that vertex operators in 
solvable models describe the symmetries of the systems in a mathematically well-
defined manner. They realize actions of infinite dimensional algebras and intertwine 
different representations. Properties of vertex operators are described in terms of their 
operator products. Functions of several complex variables appear as matrix elements of 
products of vertex operators. Vertex operators incarnate infinite dimensional 
symmetries as difference/differential equations for these functions. In this way, non-
linear Painleve equations, KP and KdV equations, KZ and qKZ equation arise in infinite 
analysis. 
 
2. Ising Model and Monodromy Preserving Deformation 
 
We introduce the two-dimensional Ising model. It is a model in classical statistical 
mechanics on the two-dimensional lattice. It has a critical point where the physical 
quantities have singularities. Exact expressions for the free energy per site, the 
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spontaneous magnetization, and the correlation functions are given. In the continuum 
limit, it gives a model of quantum field theory. 
 
2.1. Two-dimensional Ising Model and Onsager’s Result 
 
In this section, we give the definition of the two-dimensional Ising model, and give 
Onsager’s result for the free energy per site. It has a singularity when the parameters of 
the model satisfy an algebraic relation. 
 
Consider fluctuation variables , 1i jσ = ± where i M∈] ]  and .j N∈] ]  We assume 
that M, N are even. A configuration C is a mapping 
 

( ) ( ) { } ( ) ,: 1 , , .i jC M N i j σ× → ±] ] ] ] 6  
 
There are 2MN  configurations on the two-dimensional lattice ( ) ( )M N×] ] ] ]  of 

size .M N×  An element ( ),i j  of ( ) ( )M N×] ] ] ]  is called “site” or “vertex” of the 

lattice, and a pair of neighboring sites ( ) ( ), , , 1i j i j +  or ( ), , ( 1, )i j i j+  is called “edge” 
of the lattice. 
 
For each configuration C we define the energy ( )E C  by 

1 , 1, 2 , , 1,
, ,

( ) i j i j i j i j
i j i j

E C E Eσ σ σ σ+ += − −∑ ∑  

 
where 1 2, 0.E E >  This implies that the energy of a configuration is the sum of local 
energies at each edge. 
 
We set .iE

i kTK =  We use 1 2( , )K K  as parameters of the model. Set cosh 2i ic K=  and 

sinh 2 .i is K=  
 
The Boltzmann principle of classical statistical mechanics asserts that the relative 
probability of occurrence of a configuration C is given by 
 

( )E C
kTe− , 

 

where k is the Boltzmann constant and T is temperature. The quantity 
( )E C
kTe−  is called 

the Boltzmann weight of the configuration C. The partition function is the following 
configuration sum. 
 

( )

, .
E C

kT
M N

C
Z e−=∑  

 
The free energy per site is 
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, ,log .M N M N
kTf Z
MN

= −  

 
We are interested in the thermo-dynamic limit , , .limM N M Nf f→∞=  Onsager obtained 
 

2 2
1 2 1 1 2 2 1 22 0 0

1log 2 log( cos cos ) .
8

f c c s s d d
kT

π π
θ θ θ θ

π
− = + − −∫ ∫  

 
We introduce the dual parameters 2 1( , )K K∗ ∗  by 
 
sinh 2 sinh 2 1.i iK K∗ =   (2.1) 
 
Onsager’s result shows that the free energy has a singularity at the self dual point, i.e., 
 

1 2sinh 2 sinh 2 .K K∗=    (2.2) 
 
In terms of the temperature T, the corresponding point cT T=  is called the critical 
temperature. 
 
2.2. Transfer Matrix 
 
In this section, we define the transfer matrix. The calculation of the free energy per site 
reduces to the diagonalization of the transfer matrix. 
 
We can write the partition function ,M NZ  as the trace of a matrix of size 2 .MN  The 
matrix is called the transfer matrix. It is defined as follows. Consider the two-
dimensional space 2^  for representing a spin variable 1.±  We use the following Pauli 
matrices on this space. 
 

0 1 0 1 0
, , ,

1 0 0 0 1
x y zi

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
We split the two-dimensional lattice into one-dimensional slices { } ( ) ,m N× ] ]  and we 

consider the N-fold product space of the spin space (denoted by 2( ) N⊗^ ), representing 

the configuration space on the one-dimensional slice. We denote the operator xσ , etc., 
acting on the n-th component of the tensor product by ,x

nσ  etc… Set  
 

1 1

2

,
1

.2
2 2

( )

( ) (2 )

z z
n nn N

z
nn N

K
N

KN
N

V e

V s e

σ σ

σ

+∈

∗
∈

∑=

∑=

] ]

] ]
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Define the transfer matrix NV  by 
 

1 1
2 2

1 2 1( ) ( ) ( ) .N N N NV V V V=  
 
We have 
 

2, ( )
trace ( ) .N

M
M N NZ V⊗=

^
 

 
Suppose that 
 

1 2 2Ν
λ λ λ> > >"  

 
are the eigenvalues of .NV  We have 
 

, 1 2 2
.N

M M M
M NZ λ λ λ= + + +"  

 
In the thermodynamic limit, we can ignore the second and the smaller eigenvalues, and 
we have 
 

( ), 1 .,

1 1lim log lim logM N MM N N
Z

MN N
λ →∞→∞ →∞

=  

 
In this way, the calculation of the free energy reduces to the calculation of the largest 
eigenvalue of the transfer matrix. The diagonalization of the transfer matrix is the basic 
problem in the model. 
 
2.3. Harmonic Oscillator 
 
In this section, we give an algebraic method in diagonalization of the harmonic 
oscillator Hamiltonian. The Heisenberg algebra appears in the method. We will see in 
the subsequent sections that one can reduce various models to a system of infinitely 
many harmonic oscillators. 
 
In general, in quantum physics, the basic problem is the diagonalization of the 
Hamiltonian. The simplest example of the diagonalization is the harmonic oscillator in 
quantum mechanics. The Hamiltonian is given by 
 

2
2

. . 2
1 .
2h o

dH x
dx

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
A three dimensional Lie algebra plays the central role in the diagonalization. Set 
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,

1 .
2

dP x
dx

dQ x
dx

= +

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
We have the commutation relation 
 
[ , ] 1.P Q =   (2.3) 
 
The Lie algebra spanned by ,P Q  and 1 is called the Heisenberg Lie algebra. The 
Hamiltonian belongs to the universal enveloping algebra of the Heisenberg Lie algebra. 
 

. .
1 .
2h oH QP= +  

 
We have the commutation relations 
 

. . . .[ , ] , [ , ] .h o h oH P P H Q Q= − =  
 
If v  is an eigenvector of . .,h oH  then Pv  (resp., Qv ) (unless it is zero) is also an 
eigenvector, and the eigenvalue decreases (resp., increases) by 1. 
 
The eigenvector 0v  corresponding to the smallest eigenvalue is obtained by solving the 
equation 0 0.Pv =  We have 
 

21
2

0 .xv e−=  
 
The vector 0v  is called the vacuum state. It has the eigenvalue 1

2  of the Hamiltonian. 

Other eigenvectors are constructed by the operator Q as 0.nQ v  They are called the 

excited states. The state 0
nQ v  can be considered as consisting of n particles. Each 

particle has the energy 1. There is no interaction energy of these particles in the sense 
that the total energy is the sum of each constituents (apart from the vacuum energy), and 
there is no limit of the number of particles. For this reason, the harmonic oscillator is 
“free”. The operator P and Q are annihilation and creation operators of the model. 
 
2.4. Clifford Algebra and Clifford Group 
 
In this section, we introduce an algebraic structure called the Clifford algebra. It 
contains a group called the Clifford group, which underlies the solvability of the two-
dimensional Ising model. Both the transfer matrix and the spin operators belong to the 
Clifford group. 
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The harmonic oscillator has only one degree of freedom. The physical states are 
represented in terms of functions of a single variable x. The two-dimensional Ising 
model has infinite degrees of freedom in the thermodynamic limit. The vector space on 
which the transfer matrix acts is the N-fold tensor product of 2.^  Each component of 
the tensor product represents one degree of freedom, and therefore, in the limit ,N →∞  
the system has the infinite degrees of freedom. 
 
When N is finite, the tensor product 
 

2( ) N
N

⊗= ^F  
 
can be viewed as representation space of the Clifford algebra End ( )N^ F  generated by 
the Fermions , ( 1, , )n np q n N= …  
 

1 1

1 1

,

.

x x z
n n n

x x y
n n n

p

q

σ σ σ

σ σ σ
−

−

=

=

"

"
 

 
They satisfy the anti-commutation relations 
 

,[ , ] [ , ] 2 ,[ , ] 0.n n n n n n n np p q q p qδ′ ′ ′ ′+ + += = =  
 
The transformation of the operators from the Pauli matrices to the Fermions are called 
the Jordan-Wigner transformation. Let 
 

2
1 1( ) ( )N N N

N n n n nW p q= == ⊕ ⊕ ⊕^ ^ � ^  
 
be the space of Fermions. We define the Clifford group ,NG  
 

{ End ( );N NG g g= ∈ ^ F  is invertible and }1
N NgW g W− =  

 
The element Ng G∈  induces an orthogonal transformation ,gT  
 

1( ) ,gT x gxg−=  
 
of ,NW  in which the inner product is given by [ ], , .x x x x +

′ ′=  The element Ng G∈  is 

uniquely determined (up to a constant) by .gT  When ,N →∞  we have 
 
dim dim End ( ),

2 2 .
N NG

∞∞
^�

�

F
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The key fact, which ensures the solvability of the two-dimensional Ising model, is that 
the transfer matrix “essentially” belongs to the Clifford group. Let (±)

NF  be the subspace 

of NF  consisting of even/odd numbers of Fermions. There exist group elements (±)
NV  

such that 
 

(±)
(±).

N
N NV V=

F
 

 
In this way, the diagonalization of the transfer matrix reduces to the diagonalization of 

(±) ( ).
N

NV
T O W∈  We omit the details of the diagonalization for finite size. In the next 

section, we give the result in the thermodynamic limit. 
 
- 
- 
- 
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