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Summary 
 
Model theory uses formal languages to study mathematical structures. Until about 1970, 
the main focus of research was in classical model theory, where the language of first 
order logic is used to study the class of all mathematical structures.  
 
Since then, the subject has split up into many branches, which have different objectives, 
separate conferences, and almost disjoint sets of researchers. We will try to describe the 
current landscape from a broad perspective, with brief overviews of several branches of 
model theory.  
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1. Introduction 
 
Among the earliest results in model theory were the theorems of Löwenheim and 
Skolem, Tarski’s work on truth and definability, and Gödel’s completeness theorem. 
The subject became recognizable as an area of research around 1950, with the 
applications of the compactness theorem to algebra by Henkin, Tarski, Malcev, and 
Abraham Robinson.  
 
Section 2 contains an outline of classical model theory— the model theory of first order 
logic circa 1970. More recently, the subject has moved along three very general paths:  
 (A) Use first order logic to study models of “tame” theories—theories whose models 
can be described by invariants of some kind. (B) Start with a formal language and study 
the structures which interpret the language. (C) Start with the class of structures arising 
in a specific area of mathematics and build a formal language which is appropriate for 
the study of those structures. In Sections 3, 4, and 5 we give summaries of some work 
along each of these three paths.  
 
Model theory along path (A) includes stable and simple theories, o-minimal theories, 
and computable model theory. Applications of model theory to algebra are usually 
found along this path.  
 
Along path (B) one finds the model theory of infinitary logics and admissible sets, logic 
with extra quantifiers, and modal model theory.  
 
Along path (C) are finite model theory, model theories for topological structures, 
Banach spaces, and stochastic processes. Applications of model theory to computer 
science and to analysis are often found on this path.  
 
Throughout this chapter, …κ λ, ,  denote infinite cardinals, and the cardinality of a set X  
is denoted by X| | . Cardinals are defined as initial ordinals, so that 0ω =ℵ , and αω  is 
both the α -th cardinal αℵ  and the smallest ordinal of size αℵ . For finite tuples we 
write 1( )nx x … x= , ,

G , and x n| |=
G . We will assume throughout that L  is a countable 

vocabulary consisting of relation, function, and constant symbols, always including the 
equality symbol = . We keep L  countable to simplify the exposition, but some of the 
results we state have analogues for uncountable vocabularies.  
 
2. Classical Model Theory 
 
We refer to the general introduction on  Formal Logic for the basics of first order logic, 
including the notions of formula, sentence, model, truth value, theory, and complete 
theory, the various uses of the satisfaction symbol B , and the completeness theorem. 
Throughout this section, formulas and theories are understood to be first-order with a 
countable vocabulary L . The interpretations of first order logic, which we will call first 
order structures to distinguish them from other kinds of structures, consist of a 
universe set M  and a relation, function, or constant on M  corresponding to each 
symbol of L . …, ,M N  will always denote first order structures for L  with universe 
sets ,M N …, .  
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We review the basic theorem which forms the starting point for classical model theory.  
 
Theorem 2.0.1. (Compactness and Löwenheim-Skolem Theorem) Let Γ  be a set of 
sentences. If every finite subset of Γ  has a model, then Γ  has a model of cardinality at 
most ω .  
 
(This result still holds for uncountable vocabularies, but in that case Γ  has a model of 
cardinality at most ( )max ω,| Γ | .  
 
Lindström proved a striking converse result. For a rigorous statement of the result, one 
must define the general notion of a logic L  and of a model of a sentence of L . We omit 
the formal definition, which is a long list of obvious properties.  
 
Theorem 2.0.2. (Lindström’s Theorem)  First order logic is the maximal logic L  such 
that:  
(a) The interpretations of L  are first order structures.  
(b) (Countable compactness property) If Γ  is a countable set of sentences of L  and 
every finite subset of Γ  has a model, then Γ  has a model.  
(c) (Löwenheim property) Each sentence of L  which has a model has a model of 
cardinality at most ω .  
 
There are several other characterizations of first order logic in a similar vein; for a 
survey of these matters see the collection.  
 
2.1. Constructing Models 
 
In this subsection we describe some basic methods of constructing models of first order 
theories. The first of these methods, called the method of diagrams, was introduced by 
Henkin and Robinson, in order to prove the completeness theorem and other results. 
The diagram of a structure is a generalization of the multiplication table of a group.  
 
An expansion of M  is a structure ′M  for a larger vocabulary L L′ ⊇  such that ′M  
has the same universe as M  and each symbol of L  has the same interpretation in ′M  
as in M .  
 
Given X M⊆ , XL  is the vocabulary formed by adding a new constant symbol xc  to L  
for each x X∈ , and ( )X x X

x
∈

= ,M M  is the expansion of M  formed by interpreting 
each xc  by x . The diagram of M  is the set of all atomic and negated atomic sentences 
true in MM , and the elementary diagram of M  is the set ( )MTh M  of all sentences 
true in MM .  
 
A function f M N: →  is an isomorphic embedding of M  into N  if and only if 
( )a Mfa ∈,N  is a model of the diagram of M .  
 
The important notion of an elementary extension was introduced by Tarski and Vaught. 
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Two structures M  and N  are elementarily equivalent, in symbols ≡M N  or 
( ) ( )Th Th=M N , if they satisfy the same sentences of first order logic. N  is an 

elementary extension of M , in symbols ≺M N , if M N⊆  and M M≡M N . A 
function f M N: →  is an elementary embedding of M  into N , in symbols 
f : ≺M N , if ( )a Mfa ∈,N  is a model of the elementary diagram of M . Note that 
f : ≺M N  implies ≡M N .  

 
The first application of the method of diagrams was the completeness theorem. Another 
variant of the method gives the following.  
 
Theorem 2.1.1. (Downward Löwenheim–Skolem–Tarski) For every infinite X ⊆ N , 
there exists ≺M N  such that X M⊆  and M X| |=| | .  
 
Theorem 2.1.2. (Upward Löwenheim-Skolem-Tarski) If Mω κ≤| |≤ , then M  has a 
proper elementary extension of cardinality κ .  
 
When we write a set of formulas in the form ( )vΓ

G , it is understood that vG  is a finite 
tuple which contains every free variable occurring in Γ . The notation [ ]aΓ

G
MB  means 

that the tuple aG  satisfies every formula in the set ( )vΓ
G . We say that M  realizes ( )vΓ

G  
if [ ]aΓ

G
MB  for some tuple aG  in M , and that M  omits ( )vΓ

G  otherwise. The type 
( )tp a X/G  of a tuple aG  over a set X M⊆  (in M ) is the set of all formulas ( )vϕ G  of XL  

satisfied by aG  in XM .  
 
The Omitting Types Theorem is an important application of the method of diagrams. It 
says that if there is no single formula which is consistent with T  and together with T  
implies Γ , then T  has a countable model which omits Γ . In fact, the result holds for 
countably many sets of formulas.  
 
Theorem 2.1.3. (Omitting Types) Let T  be a consistent theory (not necessarily 
complete), and for each k ω<  let ( )kk vΓ G  be a set of formulas. Then either  
(i) T  has a countable model M  which omits each of the sets ( )kk vΓ G , or  
(ii) For some k ω< , there is a formula ( )kvϕ G  which is consistent with T  such that  

( )[ ( ) ( )]k k kT v v vϕ ψ∀ →G G GB  for all kψ ∈Γ .  

 
A theory T  is said to be κ -categorical if it has infinite models and any two models of 
T  of cardinality κ  are isomorphic. The Löwenheim-Skolem-Tarski theorems have the 
following corollary.  
 
Corollary 2.1.4. (Łos-Vaught test) Any theory which has no finite models and is κ -
categorical for some κ  is complete.  
 
Sometimes a theory is described in the following way. Given a class K  of structures, 
the theory of K  is defined as the set of all sentences true in all K∈M . By a set of 
axioms for a theory T  we mean a set of sentences which is logically equivalent to T .  
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Examples: The theory of infinite Abelian groups with all elements of order p  is κ -
categorical for all κ .  
 
The theory of algebraically closed fields of given characteristic is 1ω -categorical but not 
ω -categorical.  
 
The theory of dense linear order, and the theory of ∞  by ∞  equivalence relations 
(infinitely many classes, all infinite), are ω -categorical but not 1ω -categorical.  
 
By the Łos-Vaught test, each of these theories is complete.  
 
The following two results are consequences of the Omitting Types Theorem.  
 
Theorem 2.1.5. (Ryll-Nardzewski, Engeler, Svenonius) A complete theory T  with 
infinite models is ω -categorical if and only if for each n ω<  there are only finitely 
many formulas in n  free variables which are nonequivalent with respect to T .  
 
Theorem 2.1.6. (VaughtV1)  There is no complete theory which has exactly two 
countable models (up to isomorphism).  
 
For each 3 n ω≤ < , Ehrenfeucht gave an example of a complete theory with exactly n  
countable models. The complete theory of ( )Sω,  where S  is the successor function, is 
an example with ω  countable models. “Most” complete theories (for example, the 
complete theory of ( )ω,+,∗ ) have the maximum number 2ω  of countable models.  
 
The following conjecture is still open and has stimulated a great deal of research.  
 
Conjecture 1. (Vaught) There is no complete theory with more than ω  and fewer than 
2ω  countable models.  
 
Of course, this conjecture is trivial under the continuum hypotheses. Here is a partial 
result.  
 
Theorem 2.1.7. (Morley) There is no complete theory with more than 1ω  and fewer 
than 2ω  countable models.  
 
An elementary chain is a sequence of structures ( )n n ω, <M  such that 1n n+≺M M  for 
each n .  
 
Theorem 2.1.8. (Tarski and Vaught)  If ( )n n ω, <M  is an elementary chain, then for 
each k , k nn

≺ ∪M M .  
 
Elementary chains can be used to construct saturated structures, which are “very rich”.  
 
M  is κ -saturated if for each set X M⊆  of cardinality less than κ , every set of 
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formulas of XL  which is finitely satisfiable in XM  is realized in XM .  
M  is saturated if it is M| | -saturated.  
 
Theorem 2.1.9. (Morley and Vaught) (i) If ≡M N , and ,M N  are saturated and 
have the same cardinality, then ≅M N .  
(ii) If M  is saturated, ≡N M , and N M| |≤| | , then N  is elementarily embeddable in 
M .  
(iii) For each κ , every complete theory with infinite models has a κ + -saturated model 
of cardinality 2κ .  
(iv) If ω κ<  and κ  is inaccessible, then every complete theory with infinite models has 
a saturated model of cardinality κ .  
 
At the other extreme are prime models, which are as “as small as possible”. M  is 
prime if M is elementarily embeddable in every model ≡N M . Prime models of a 
complete theory do not always exist, but when they exist they are unique.  
 
Theorem 2.1.10. (VaughtV1 (i) If ≡M N  and ,M N  are prime, then ≅M N .  
(ii) If a complete theory T  has a countable saturated model, it has a prime model.  
The standard model ( )ω,+,∗  of arithmetic is a prime model, but it’s complete theory 
does not have a countable saturated model.  
 
A useful variant of the notion of a saturated model is that of a computably (or 
recursively) saturated model, introduced by Barwise and Schlipf. Assume that L  and 
the sequence of arities of symbols of L  are computable. M  is computably saturated 
if for every n -tuple aG  in M , every computable set ( )xΓ  of formulas of aLG  which is 
finitely satisfiable in ( )a, GM  is realized in ( )a, GM . While countable saturated models 
do not always exist, the next result shows that countable computably saturated models 
do always exist.  
 
Theorem 2.1.11. (Barwise and Schlipf) (i) Every complete theory T  has a finite or 
countable computably saturated model.  
(ii) Every countable structure has a countable computably saturated elementary 
extension.  
(iii) If M  is countable and computably saturated, then M  is resplendent, that is, for 
every finite tuple aG  in M  and sentence ϕ  of { }aL R∪G  where R  is a new predicate 
symbol, if ϕ  is consistent with the theory of ( )a, GM  then ϕ  holds in some expansion of 
( )a, GM  to { }aL R∪G .  
 
Indiscernible sequences give a way to construct large models which realize only 
countably many types. An indiscernible sequence in a structure M  is a linearly 
ordered set ( )I ,<  such that I M⊆ , and ( ) ( )a b, ≡ ,

GG
M M  for any two increasing tuples 

a b,
GG  of the same length from I . Indiscernible sequences of n -tuples are defined in a 

similar way.  
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Theorem 2.1.12. (Ehrenfeucht-Mostowski) Let T  be a complete theory with infinite 
models. Then for every linearly ordered set ( )I ,<  there is a model M  of T  such that 
( )I ,<  is indiscernible in M  and only countably many types over ∅  are realized in 
M .  
 
The ultrapower is an “algebraic” construction which produces elementary extensions 
realizing many types. An ultrafilter over a set I  is a finitely additive measure on I  
such that every subset of I  has measure 0 or 1. Given an ultrafilter U  over I , the 
ultrapower I U/M  is formed by taking the direct power IM , identifying elements 

If g, ∈M  if ( ) ( ) ( )f i g i a e U= . . , and stipulating that an atomic formula holds in 
I U/M  iff it holds ( )a e U. . . In a similar way one can define the ultraproduct of an 

indexed family of different structures i i I, ∈M .  
 
Theorem 2.1.13. (Łos) For any structure M  and ultrafilter U  over I , the diagonal 
mapping ( ) { }d a I a= ×  is an elementary embedding Id U: /≺M M .  
 
Theorem 2.1.14. (Keisler, Kunen)  There is an ultrafilter U  over κ  such that for every 
M , Uκ /M  is κ + -saturated.  
 
Theorem 2.1.15. (Keisler, Shelah)  ≡M N  if and only if there exists a set I  and 
ultrafilter U  such that I IU U/ ≅ /M N .  
 
- 
- 
- 
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