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Summary 
 
In this chapter, we discuss discrete optimization problems. Among them, we first 
consider those problems formulated as the integer programming problem, and describe 
their mathematical properties derivable from coefficient matrices. Then algorithms to 
solve discrete optimization problems are explained, ranging from exact enumerative 
algorithms such as branch-and-bound and branch-and-cut, to approximation algorithms. 
As approximation algorithms, we present some simple ones with theoretical 
performance guarantees as well as metaheuristic algorithms such as iterated local 
search, simulated annealing, tabu search and genetic algorithms, which are being 
applied to many practical problems. 
 
1. Introduction 
 
An optimization problem is generally described as follows: 
 

: minimize (or maximize) ( )Q f x  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Optimization - Toshihide Ibaraki 
 

©Encyclopedia of Life Support Systems (EOLSS) 

subject to ,x F∈        (1) 
 
where F is a feasible region, which is a subset of the underlying space X, and f is an 
objective function. A solution x X∈  is called feasible if it belongs to F, and a feasible 
solution x F∈  is called optimal if no feasible solution y F∈  satisfies ( ) ( )f y f x< . (If 
the problem is one of maximization, the condition is replaced by ( ) ( )f y f x> .) We call 
an optimization problem Q as a discrete optimization problem (or combinatorial 
optimization problem) if F and/or X are discrete in some sense. Typically sets F and X 
are considered to be discrete if they are finite or countably infinite; e.g, the set of n-
dimensional integer vectors, the set of n-dimensional 0-1 vectors, the set of 
permutations of n objects, the set of all subsets of an underlying finite set, and the set of 
all mappings from a finite set to a finite set.  
 
As we shall see in the subsequent discussion, a variety of problems of practical 
importance can be formulated as discrete optimization problems. However, many of 
them are known to be computationally intractable as they belong to the class of NP-hard 
problems or other classes of higher complexity. Thus main efforts have been invested in 
two directions; one is to identify specially structured problems which permit efficient 
algorithms, and the other is to develop approximation algorithms that can obtain 
reasonably good solutions (if not optimal) requiring practically reasonable computation 
time. There are also attempts to develop exact algorithms that run in practical time if the 
problem instances are not very large. 
 
Example 1.1 (traveling salesman problem):  Given n cities 1, 2, , n…  and distances ijd  
from city i to j, 1 , 1 ,i n j n≤ ≤ ≤ ≤  we want to find a shortest tour that visits all cities 
(i.e., a Hamiltonian cycle). This problem is called the traveling salesman problem. In 
general, we allow ,ij jid d≠  but, in many applications, ij jid d=  holds for all i and j. In 
the latter case, the problem is called the symmetric traveling salesman problem. As a 
tour can be represented as a permutation 1 2( , , , )ni i iπ = …  of n cities, the problem asks 

to find a permutation π that minimizes the tour length 
1 1

1
1( ) .

k k n

n
i i i ikd d dπ

+

−
=

= +∑  This is 

one of the most well known discrete optimization problems, and is NP-hard [8, 5].  
 
Example 1.2 (set covering problem):  For a finite ground set {1,2, , },M m= …  we are 
given a family of its subsets , 1, 2, , ,jM M j n⊆ = …  as well as their weights jc . The set 

covering problem asks to find a subfamily of subsets 
1 2
, , ,

kj j jM M M…  such that their 

union covers M (i.e., 1 l

k
l jM M=∪ = ) and the sum of their weights 1 l

k
jl c

=∑  is 

minimized. It has many applications such as optimal crew scheduling for flights and 
finding optimum locations of service facilities. This problem is NP-hard [5].        
 
Example 1.3 (maximum satisfiability problem): Given n 0-1 variables 1 2, , , ,nx x x…  a 
subset 1 1 2 2{ , , , , , , }i n nC x x x x x x⊆ …  is called a clause, where jx  and jx  are literals, and 

1j jx x= −  holds. We say that iC  is satisfied by a 0-1 vector x if either 1jx =  holds for 
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at least one literal j ix C∈  or 0jx =  holds for at least one literal j ix C∈ . Given a set of 

m clauses { 1, 2, , }iC i m= = …C  and their weights ( 0),iw >  we are asked to find an x 
that maximizes the sum of weights iw  of the clauses iC  satisfied by x. This is called the 
maximum satisfiability problem, which is also known to be NP-hard [5].        
 
 
 
 
2. Integer Programming 
 
2.1 Definitions 
 
A discrete optimization problem in the following form is called the integer 
programming problem:  
 

minimize 
1

n

j j
j

c x
=
∑  

subject to 
1

, 1, 2, ,
n

ij j i
j

a x b i m
=

≥ =∑ …      (2) 

  0, 1, 2, ,jx j n≥ = …  

  : integers, ,jx j J∈  
 
where J is a subset of {1,2, , }V n= …  and gives the index set of integer variables. If 

,J V=  this is the all integer programming problem, and otherwise (i.e., ,J V⊂  where 
⊂  denotes the proper inclusion) the mixed integer programming problem. In many 
applications, integer variables are further restricted to be 0 or 1, and the resulting 
problems are respectively called the all 0-1 programming problem and mixed 0-1 
programming problem, analogously to the above classification. In the special case of 

0,J = /  the problem becomes the linear programming problem. An important difference 
between the integer programming problem and the linear programming problem is that, 
while the former is NP-hard, the latter can be solved in polynomial time by using 
interior point methods [9, 10]. 
 
It is clear to see that minimization in (2) can be changed to maximization by redefining 

( )f x−  as ( ),f x  and the inequalities ≥  in the constraint set can be changed to ≤  by 
appropriately multiplying –1 to coefficients ija  and ib . Similarly, equality constraints 
can be represented by combining inequality constraints. In the following, therefore, the 
objective function and constraints will be treated in convenient forms. 
 
Example 2.1 (knapsack problem): The following integer programming problem with 
only one constraint of linear inequality is called the knapsack problem. 
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maximize 
1

n

j j
j

c x
=
∑  

subject to 
1

n

j j
j

a x b
=

≤∑        (3) 

  : nonnegative integers, 1, 2, , ,jx j n= …  

where ,j ja c  for all j and b are nonnegative integers. If jx are further restricted to be 0 
or 1, it is called the 0-1 knapsack problem.         
 
Example 2.2 (set covering problem): The set covering problem defined in Example 1.2 
can be formulated as the following integer programming problem. 
 

minimize 
1

n

j j
j

c x
=
∑  

subject to 
1

1, 1,2, ,
n

ij j
j

a x i m
=

≥ =∑ …      (4) 

  0 or 1, 1, 2, , ,jx j n= = …  
 
where 1ija =  if ,ji M∈  and 0 otherwise.       
        
Example 2.3 (traveling salesman problem): The symmetric traveling salesman problem 
defined in Example 1.1 can be formulated as the following integer programming 
problem, where {1,2, , }V n= …  and 0-1 variables ijx  are introduced for all ,i j V∈  with 

i j< . Note that a solution { }ijx x i j= <  of 0 -1 variables represents the set of edges 

( , )i j  defined by 1.ijx =  
 
minimize ij ij

i j
d x

<
∑  

subject to 2, 1,2, ,ik kj
i k j k

x x k n
< >

+ = = …∑ ∑     (5) 

  
, ,

1, 0ij
i j i j W

x W W V
< ∈

≤ − / ≠ ⊂∑  

  0 1, 1 .ijx or i j n= ≤ < ≤  
 
The first set of constraints says that, at each city k, two edges incident to k are selected. 
As this set of constraints allows as a solution, a set of disjoint cycles that together 
covers all cities, the second set of constraints is introduced to choose at most 1W −  
edges in each W; thus prohibiting a short cycle contained in W.      
 
In the following two subsections, we first consider special cases of the integer 
programming problem in which integer solutions are always obtained as a result of 
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solving their linear programming relaxations, and then the general cases in which such 
nice property does not hold. 
 
2.2 Total Unimodularity 
 
Let us describe the constraints (2) without integrality constraint in the matrix form: 
 

, 0,Ax b x≥ ≥  
 
where A is an m n×  matrix of coefficients ,ija  b is an m-vector of coefficients ib  and 

x  is an n-vector of variables jx . The set 
 

{ , 0}P x Ax b x= ≥ ≥         (6) 
 
is the polyhedron defined by the above constraint. A polyhedron P is integral if all of its 
vertices are integer points. Such a polyhedron plays an important role in integer 
programming, since the linear programming relaxation obtained from (2) by ignoring 
the integrality constraint always gives an optimal solution that is integral. Thus, in this 
case, the linear programming relaxation solves the integer programming problem in 
polynomial time (by using a polynomial time algorithm for linear programming [9, 10]). 
  
In order to characterize the above property, the following concept is introduced. A 
matrix A is called totally unimodular if every subdeterminant of A is 0, 1 or –1. This 
says, in particular, that each entry of A  is 0, 1 or –1. Totally unimodular matrices arise 
in various applications. The following theorem is due to Hoffman and Kruskal [10]. 
 
Theorem 1   A polyhedron { , 0}x Ax b x≥ ≥  is integral for any integral vector b if and 
only if matrix A is totally unimodular.   
 
Example 2.4 (bipartite graphs):  Let ( , )G V E=  be an undirected graph, and let M  be 
its incidence matrix; i.e., M  is the 0-1 matrix with rows and columns indexed by the 
vertices and edges of G, respectively, where , 1v eM =  holds if and only if v is an end 
vertex of edge e. Then it is known that M  is totally unimodular if and only if G is 
bipartite. 
 
Now, given an undirected graph ( , ),G V E=  the problem of finding the largest set V ∗  

of independent vertices (i.e., no edge ( , )e v w E= ∈  satisfies ,v w V ∗∈ ) can be 
described as follows. 
 
maximize i

i V
y

∈
∑  

subject to 1,ie i
i V

a y e E
∈

≤ ∈∑       (7) 

  0 or 1, ,iy i V= ∈  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. III - Optimization - Toshihide Ibaraki 
 

©Encyclopedia of Life Support Systems (EOLSS) 

where 1iea =  holds if i is an end vertex of ,e E∈  and 0 otherwise. Based on this 

formulation, the largest set { 1}iV i y∗ ∗= =  is obtained from its optimal solution .y∗  

 
Similarly, the problem of finding the smallest set E∗  of edges that cover all vertices 
(i.e., every vertex is incident to at least one edge in E∗ ) is described as follows by using 
the same coefficients .iea  
 
minimize e

e E
x

∈
∑  

subject to 1,ie e
e E

a x i V
∈

≥ ∈∑       (8) 

  0 or 1, .ex e E= ∈  
 
If G  is bipartite, the total unimodularity says that the linear programming relaxations of 
(7) and (8) (i.e., the 0-1 constraints are relaxed to 0 1iy≤ ≤  and 0 1,ex≤ ≤  respectively) 
give integral optimal solutions of (7) and (8), respectively. Thus these integer 
programming problems can be solved in polynomial time. Furthermore, the duality 
theorem of linear programming tells that the optimum values of (7) and (8) coincide. 
This is known as König’s theorem [2, 10] in graph theory.   
 
Example 2.5 (directed graphs):  Let ( , )D V E=  be a directed graph, and let M  be its 
incidence matrix; i.e., M  is a matrix of 0, 1 and –1 with rows and columns indexed by 
the vertices and arcs of D, respectively, where , 1v aM =  (resp., –1) holds if and only if 
arc a leaves (resp., enters) v. Note that a matrix is the incidence matrix of a directed 
graph if and only if each column contains exactly one entry of 1, exactly one entry of –1 
and otherwise all 0 entries. Such matrices are always totally unimodular. The constraints 
using incidence matrices of directed graphs appear in network flow problems. In 
Section 4, two of such problems will be discussed.   
 
Example 2.6 (network matrix):  Let ( , )D V E=  be a directed graph, and let 0( , )T V E=  
be a directed tree in D. Let M  be the matrix whose rows and columns are indexed by 

0E  and ,E  respectively, and whose entries are defined as follows, where 

0, ( , )a E a v w E′∈ = ∈  and ( , )v wπ  denotes the unique path in T from v to w. 
 

,

1, if ( , ) passes through forwardly,
1, if ( , ) passes through backwardly,

0, otherwise.
a a

v w a
M v w a

π
π′

′⎧
⎪ ′= −⎨
⎪
⎩

   (9) 

 
The matrices M  thus constructed are called network matrices. It is known that all 
network matrices are totally unimodular [10].  
 
Important questions concerning total unimodularity would be to clarify their structures 
and to find an algorithm to determine whether a given matrix is totally unimodular or 
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not. For the first question, the following theorem contains some of the known 
characterizations. 
 
Theorem 2   Let A be a matrix consisting of entries 0, 1 and –1. Then the following 
conditions are equivalent. 

(i)   A is totally unimodular. 
(ii)   Each collection of columns of A can be split into two parts such that the sum of 
the columns in one part minus the sum of the columns in the other part is a vector of 
entries 0, 1 and –1. 
(iii)   Each nonsingular submatrix of A has a row with an odd number of nonzero 
entries. 
(iv)   The sum of entries in any square submatrix with even row sum and even 
column sum is divisible by 4. 
(v) No square submatrix of A has determinant +2 or –2.  

 
In developing an algorithm for total unimodularity, the network matrix of Example 2.6 
plays an important role, since a theorem of Seymour states that any totally unimodular 
matrix can be obtained from network matrices and other two special matrices by 
applying certain simple operations (details are omitted). Based on these, the following 
theorem was proved [10]. 
 
Theorem 3   Given a matrix A of entries 0,1 and -1, it can be checked in polynomial 
time whether A is totally unimodular or not.  
 
Related to integrality of a polyhedron, various concepts have been introduced such as 
balanced matrices, total dual integrality (TDI) and perfect matrices. Discussion on 
these concepts can be found in textbooks such as [10]. 
 
- 
- 
- 
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