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Summary 
 
Ergodic theorems give conditions for the convergence of time averages of stochastic 
processes. Probably the most natural processes to consider in this respect are stationary 
processes, and so versions of the ergodic theorem are established for both weak and 
strict sense stationary processes. Another class of stochastic processes for which ergodic 
theorems are easily obtained is given by the Markov processes. In addition, regenerative 
processes, which extend the definition of Markov processes, are defined, and the 
ergodic theorem is extended to these processes, too. Finally some applications of the 
ergodic theorem are discussed. 

1. Introduction 

Ergodic theorems in general are about questions of the convergence of time averages of 
(not necessarily stochastic) processes. In the case of stochastic processes, there are two 
parts to a question like this: first, there is the question of existence: there is no need to 
think any further if the time averages do not converge in the first place. Then, there is 
the question of the identification of the limit; in the ideal case, the limit would be the 
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mathematical expectation of the associated random variable (if one can give a clear 
interpretation to this, of course), but things do not always turn out that simple. Anyway, 
the idea of time averages converging to expectations is one of the cornerstones of 
statistical mechanics, and, maybe in a somewhat lesser extent, of mathematical 
statistics. 
 
The archetypical example is the classical law of large numbers: for a sequence ( )nξ  of 
independent, identically distributed random variables with expectation μ , one simply 
has 
 

1

1 ( )
n

k
k

n
ξ μ

=

→∑   (1) 

 
with probability one as n →∞ . Actually, even the converse is true in the following 
sense: if the limit above exists, then the variables ( )nξ do have a finite expectation, and 
it is equal to μ . 
 
Given that one hopes that the time averages will converge to the expectation of the one-
dimensional marginal distribution, it is obvious that the most important case is the one 
where this hope has any chance to be fulfilled, that is, if the one-dimensional marginals 
are all the same; so, the first case that will be studied is that of a stationary process. 
 
Actually, the statement about the objective of ergodic theory that was made above is, to 
say the least, incomplete. Modern ergodic theory is far more general, and in particular, it 
is not restricted to questions from the theory of stochastic processes or from probability 
theory. Rather it can be described as the theory of the iterates of a positive contraction 
on some abstract function space, that is, of an operator T that satisfies 
 
1. If 0,f ≥  then 0,Tf ≥  and 
2. .Tf f≤∫ ∫  
 
In the case of a stationary process (in discrete time), the role of the operator T is, of 
course taken by the shift operator 1θ  (this operator maps ( )tξ  to ( 1)t +ξ  and can be 
extended to the set of all random variables that can be defined in terms of ξ . For a more 
formal definition, see Stationary Processes. But stationary processes are not the only 
ones that come along with a natural contraction; the transition operators of a Markov 
process exhibit the same property.  
 
Thus, Markov processes (more precisely, Markov chains) are another candidate for 
studies related to ergodic theory. Finally, a slight extension of the notion of a Markov 
process, the so-called “regenerative processes”, which have some importance in applied 
fields like queuing theory and decision theory, will be introduced, and their ergodic 
properties will be studied. 

2. Ergodic Theory for Stationary Processes 
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2.1. The Mean Square Ergodic Theorem 
 
As there are two ways in which stationarity can be defined, namely weak stationarity, 
which only states that the mean and covariance function remain unaffected by a shift 
time, and strict stationarity, which demands shift invariance for all finite-dimensional 
marginals, there naturally is more than one way to formulate ergodic theorems for 
stationary processes. In the case of a weak sense stationary process, the appropriate type 
of convergence to consider is convergence in mean square. Actually, in Stationary 
Processes a related result has already been proved, which shall be recalled here: Let 

( )ξ n  be a centered weakly stationary sequence, and (.)Z  is the associated spectral 

process (i.e., and orthogonal increment process such that ( ) ( )intn e dZ tξ
−

= ∫
π

π
 ), then 
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If ( )tξ  is a centered weakly stationary process in continuous time, one can likewise 
prove 
 

lim ( ) (0) (0 ).
t

st s
x dx Z Zξ

− →∞
= − −∫   (3) 

 
where Z is again the associated spectral process. 
 
Thus, the limit (in square mean) of the time average exists and equals the height of the 
jump of the random function Z in 0. So, a necessary and sufficient condition for the 
convergence of the mean to the expectation of ( )tξ  (which is zero in the case studied 
here, but the general case is readily settled by considering ( )t mξ −  is the continuity of 
the spectral function F at 0. 
 
This criterion is nice, but one would rather have a criterion in terms of the correlation 
function itself; this goal is not too hard to achieve, and is given by the following 
theorem: 
 
Theorem 1 Let ( )nξ  be a weak sense stationary sequence with mean m  and 
covariance function (.)R ; furthermore, let 
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if and only if 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. I - Ergodic Properties of Stationary, Markov, and Regenerative Processes - Karl Grill 
 

©Encyclopedia of Life Support Systems (EOLSS) 

2lim (( ( ) ) ) 0
n

n mξ
→∞

− =E .  (6) 

 
Without loss of generality, it may be assumed that 0m =  (otherwise, one can pass on to 

( ) ( )n n mη ξ= − ). 
 
It is readily seen that (5) is the limit of the covariance of ( )nξ  and (0)ξ , and that (6) is 
the limit of the variance of ( )nξ . Thus, the theorem states that the variance of ( )nξ  
tends to zero if and only if the covariance of (0)ξ  and ( )nξ  tends to zero. 
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and observe that by Cauchy’s inequality, 
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so (6) implies (5) . 
 
For the opposite direction, calculate the variance of  ( )nξ : 
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By assumption, ( ) 0R n →  as n →∞ , and so, by Kronecker’s lemma, the first term 
above tends to zero as n →∞ . The second term obviously is negligible, so the theorem 
is completely proved.   
 
- 
- 
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