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Summary 
 
The paper presents in short the main questions related to the use of simulation in 
studying statistical problems and solving some classes of numerical problems. First, 
methods for simulating various types of statistical distributions are presented. Then, 
some applications of simulation in statistics, including bootstrap techniques, are also 
discussed. A special attention is paid to Monte Carlo techniques and the Markov Chain 
Monte Carlo method. References contain only some of the representative or recent 
publications. 

1. Introduction 

The term simulation represents today science of a wide class of problems, solved or 
analyzed via computers. There are many ways to define and understand simulation but 
all of them assume the use of random numbers to perform a computer experiment for 
solving some mathematical or practical problem. In this article, the word simulation is 
also associated with terms like Monte Carlo techniques and resampling techniques, the 
last one involving statistical problems. 
 
Random numbers are sampling values on the uniform distribution over ( )0, 1  which has 
the probability density function (pdf) 
 

1, if (0,1)
( )

0, otherwise.
u

f u
∈⎧

= ⎨
⎩

        

  
(Note that it makes no difference if we consider the interval ( )0, 1  as being open or 
closed at any of its limits). 
 
The following proposition (due to Khintchine) plays a great role in simulating non-
uniform random variates. 
 
Theorem 1: If X  is a random variable having the cumulative distribution function 
(cdf) ( ) ,F x x R∈ , and U  denotes the random variable uniformly distributed over 

( )0,1 , then the random variable ( )1F U−  (with 1F − -the inverse of F ), has the cdf F . 
 
In other words, this theorem gives a general method for simulating a sampling value x  
of the random variable X  when we have a sampling value u  of U , namely, 

( )1x F u−= . That is why the next chapter will be dedicated to simulating random 
numbers. The same theorem suggests that there could be various methods which 
transform sequences of random numbers into non-uniform variates. Thus, another 
chapter will discuss these methods. 
 
Since one purpose of this paper is to discuss the use of simulation in solving statistical 
problems, one section is devoted to the bootstrap method and some applications. The 
Monte Carlo method for solving various numerical problems is introduced in another 
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chapter. Some applications of the so-called Markov Chain Monte Carlo are also 
presented. 

2. Random Number Generation 

Random numbers, i.e. sampling values on the random variable U  uniformly distributed 
over ( )0,1  (denoted ( )0, 1U ∼ ), are very important for the problems to be treated in this 
paper. 
 
The aim of this chapter is to present in short some methods for generating with the 
computer sampling values on the random variable U , which are independent and 
uniformly distributed over [ )0,1 . As Knuth and other authors have shown, the computer 
calculations necessary to produce good random numbers, require first to generate 
uniformly distributed integers over some interval [ )0, m , and then to divide this by m  
in order to obtain the required random number. The calculations needed to produce 
uniformly distributed integers in [ )0, m  must be simple. In other words, the generation 
algorithm must have a low complexity, both regarding computing time and memory 
complexities. Details on random number generation are found in many books (see for 
instance Devroye-1986, Ermakov-1971, Gentle-1998, Ripley-1986 and Ross-1997). 
 
2.3. Linear Congruential Generators 
 
A linear congruential generator is of the form 
 

1
(mod ), ,−

=

⎛ ⎞
= + ∈⎜ ⎟⎜ ⎟
⎝ ⎠
∑ N
k

n i n i n
i

x a x c m x  (1) 

 
where m  is a large positive integer, k n≤ , and , , 1, , ,i ia x i k c= …  are given constants, 
all chosen such that the produced numbers nx , n k>  are integers uniformly distributed 
over the interval [ )0, 1m −  and N  is the set of natural numbers. Then the uniform 

[ )0, 1U  random numbers are obtained as 
 

.n
n

x
u

m
=          (1a) 

 
The usual linear (mixed) congruential generator is the one with 1k = , i.e. 

( )( )1 modn nx a x c m∗
+ = + . If a , c  and m  are properly chosen, then, in this case, nu  

"look like" they are randomly and uniformly distributed between 0 and 1. Even if this 
linear congruential generator has a low complexity, the most used is the multiplicative 
congruential generator 
 

1 ( ) (mod ) .+ =n nx ax m        (2) 
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If 0 0x ≠  is prime with m , and a  is a primitive root mod m , close to ,m  then the 
numbers nu , produced by this generator have a large period λ , (defined as the 
minimum λ  such as n nx x += λ  ), they are approximately uniform ( )0, 1  distributed and 

have a small serial correlation coefficient ( )1,n ncorr u u nρ += ∀  (i.e. are almost 
independent). Of course, the modulus m must be very large (usually close to the 
computer word, i.e. close to 231). 
 
In simulation we use sequences of random numbers 1 2, , , nu u u…  produced by a random 
number generator. These numbers must pass any test which assumes that they are 
uniformly distributed and stochastically independent. It is obvious that a random 
number generator cannot produce "pure" random numbers to pass the mentioned tests. 
Therefore we call them pseudo-random numbers. A "good" random number generator 
must produce sequences close to pure random numbers. A linear congruential generator 
cannot produce good random numbers. It can be used when there is no need to perform 
very accurate calculations or to obtain exact solutions to the problems. 
 
One trouble with using pseudorandom numbers produced by a linear congruential 
generator is that pairs ( )1,i iu u +  or triplets ( )1 2, ,i i iu u u+ +  are lying on lines or planes 
(i.e. have a lattice structure). This means that these generators must be used with care in 
numerical calculations. In order to obtain "better" random numbers from a uniform 
pseudo-random number generator, the numbers produced by the generator must be 
transformed. If we consider the binary representation of the numbers iu , then one way 
to obtain better numbers is to use the bit stripping, i.e. to obtain the new numbers by 
selecting some bits from the sequences of bits representing previous given numbers (e.g. 
odd bits or even bits, etc). 
 
2.4. Other Sources of Uniform Random Numbers 
 
Note that if in (2) we take ka  instead of a  and start with sx , then the sequence of 
pseudo-random numbers obtained is 2, ,s s k s kx x x+ ++ …  and therefore, for various 
values of s , the corresponding stream can be used by one processor in a parallel 
architecture. 
 
Shuffling random numbers: A way of improving the quality of a uniform pseudo-
random number generator is to define the new number y by mixing (or shuffling) two 
generators 1G , 2G . One mixing algorithm (due to MacLaren and Marsaglia) is: 
 
Take an array (i.e. a table) [ ]1 ,T k k =…  = fixed, and initialize (fill in) it using 1G ; 

generate with 2G  a random index { }1, 2,j k∈ … ; take [ ]:y T j= ; generate x  with 1G , 

and put [ ]T k x= . 
 
(The expression :a b=  means that b  is assigned to a ). The better generated number is 
y . This mixed generator can have a larger period and can break up the lattice structure 
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of the generated sequence { }iy . If instead of two generators we use only one, 

1 2G G G= = , then the above algorithm (called Bays-Durham shuffling of random 
numbers) can be easily changed by generating only one x  in the initial step and 
determining j  by the "bit stripping" procedure mentioned before. 
 
Lagged Fibonacci sequences: Apart from linear congruential generators, another way 
of generating random numbers is to use the lagged Fibonacci generator, defined as 
 

( ) (mod )i j i kx x x m− −= +  (3) 
 
which, when m  is prime and k j> , gives a period close to 1km − . 
 
Inversive congruential generators: This method produces uniform integers over 
[ ]0, 1m −  by the relation 
 

( )1
1 (mod )i ix ax c m−
−= +  (4) 

 
where 1x−  denotes the multiplicative inverse modulo m  if it exists, or else is 0. Even if 
these inverting generators imply computational difficulties, they promise to give high 
quality random sequences. 
 
Matrix congruential generators: Such a generator is of the form 
 

1( ) (mod )i i m−= +x Ax C  
 
where ix  are vectors of dimension d  and A  and C  are d d×  matrices. This kind of 
generators are important when parallel computers are used to produce correlated 
random vectors. 
 
Feedback shift register generators: Such a generator takes into consideration the 
binary representation of integers in registers of the computer. If , 1, ,ia i p= … , denote 
the binary digits of the random number, and ic  are given (not all zero) binary digits, 
then the digits ia  of the new generated number are produced by 
 

1 1 1 1( ) (mod 2).− − − + −= + + +…i p i p p i p ia c a c a c a     (5) 
 
This generator was introduced by Tausworthe. In practice it has the form 
 

( ) (mod 2)− − += +i i p i p qa a a  (5a) 
 
or, if we denote ⊕, the binary exclusive-or operation, as addition of 0's and 1's modulo 
2, equation (5a) becomes 
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.− − += ⊕i i p i p qa a a         (5b) 
 
Note that this recurrence of bits ia ’s is the same as the recurrence of random numbers, 
(interpreted as l −tuples of bits), namely, 
 

.− − += ⊕i i p i p qx x x         (6) 
 
If the random number has l  binary digits ( )l p≤ , and l  is relatively prime to 2 1p − , 

then the period of the l −tuples (i.e. of the sequence of generated numbers) is 2 1p − . A 
variation of the Tausworthe generator, called generalized feedback shift register 
(GFSR), is obtained if we use a bit-generator in the form (5a) to obtain an l −bit binary 
number and next bit-positions are obtained from the same bit-positions but with delay 
(by shifting usually to the left). A particular GFSR is 

3 3 , 521, 32i i p i qx x x p q− −= ⊕ = =  which gives a period 2521 − 1. Another generator of 
this kind is the so-called twisted GSFR generator, which recurrently defines the random 
integers ix  as 

− − += ⊕i i p i p qx x Ax   (6a) 
 
where A  is a properly chosen p p×  matrix. 
 
A practical remark: Apart from shuffling random numbers as mentioned above, some 
other simple combinations could be used to produce "good" random numbers. Thus, if 
we use the following three generators 
 

1 1 1171 (mod 30269), 172 (mod 30307), 170 (mod 30323)i i i i i ix x y y z z− − −= = =  
 
with positive initializations (seeds) ( )0 0 0, ,x y z  and take uniform ( )0, 1  numbers such 
as 
 

(mod 1)
30269 30307 30323

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

i i i
i

x y z
u  

 
it can be shown that the sequence of iu ’s has a period of order 1012. 

3. Non Uniform Random Variate Generation 

In this chapter we assume that a uniform ( )0, 1  random number generator called rnd is 
given. The aim of this chapter is to present methods and algorithms which transform 
sequences of random numbers 2 , , , 1i nu u u n⋅ ≥…  into a sampling value of a given 
random variable X  which has a cdf ( )F x . (For further information see Devroye-1986, 
Gentle-1998 and Ross-1997). 
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3.3. General Methods 
 
3.3.1. The Inverse Method 
 
Theorem 1 leads to the following algorithm (the inverse method): 
 
generateu  with rnd; take ( )1:x F u−= . 
 
The following list gives some examples of the inverse method: 
 

Distribution cdf Inverse 
( )exp λ  ( ) 1 , 0, 0xF x e x−= − > >λ λ  ( ): lnx u= −  

( )0,1,Weib v  ( ) 1 xF x e
ν−= − ,ν > 0  ( )( )1: ln vx u= −  

Cauch ( ) 1 (arctan ),
2

F x x x Rπ
π

= + ∈  1tan ( )
2

x uπ= −  

Pears XI ( ) 11 , 0, 0
(1 )

F x x
xα ν= − > ν >

+ 1
1x

u ν=  

 
(The abbreviations are: exp for exponential; Weib for Weibull; Cauch for Cauchy; Pears 
XI for Pearson type XI). 
 
In the multivariate case, there is a generalization of Theorem 1 which gives a similar 

algorithm for simulating a sampling value ( )1 2, , , kx x x ′=x …  of the k -dimensional 

random vector X  which has the cdf ( )F x . Let us denote 
 

1 1 1 1 1 1 1 1( ) ( ), ( ) ( , , ),1 .j j j j j jF x P X x F x P X x X x X x j k− −= < = < = = < ≤…  

 
The algorithm is (the multivariate inverse method): 
 
generate u  with rnd;  
take ( )1

1 1x F u−=  
for : 2i =  to k  do 
begin 
Generate u  with rnd; take 

1( );−=i ix F u  
end. 
 
An inverse algorithm for simulating a finite discrete random variate having probability 
distribution 
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1 2

1 2

, , ,
:

, , ,
⎛ ⎞
⎜ ⎟
⎝ ⎠

…
…

n

n

a a a
X

p p p
 

 
is: 
 

1
calculate , 1 ; take : 0;

=
= ≤ ≤ =∑ α
α

i

iF p i n i  

generate u  with rnd; 
repeat 

: 1;= +i i  
until iu F< ; 
take : ix a= . 
 
The loop in the algorithm searches for the value of index i ; this can be better done by 
using the binary search technique. 
 
- 
- 
- 
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