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Summary 
 
Correlation analysis is one of the most important aspects of multivariate statistical 
theory. Based on the different definitions of correlation coefficients (ordinary, partial, 
multiple and canonical), which (generally) measure the linear association between 
random variables or groups of random variables, a statistical analysis enables to explore 
the joint performance of the variables and to determine the effect of each of these 
variables in the presence of the others. 
 
1. Correlation Between Two Random Variables (Simple Correlation) 
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Then the (simple or ordinary) correlation coefficient of X1  and X2  is defined by  
 

( )
( ) ( ),

cov ,
var var

= =
⋅1 2

1 2

1 2
X X

X X

X X
� �   (1)  

 
with   
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( ) ( ) ( )( )( )cov , cov ,= =1 2 2 1 1 1 2 2X X X X X – X X – XE E E  (2) 
 

and    ( ) ( )( )2var 1,2.i i i i= =>0,X X – XE E  (3) 

 
This correlation coefficient is a quantitative measure for the (linear) association - called 
correlation - between the random variables X1and X2  with the following properties 
 

1 1− ≤ ≤�  

( )( )resp is called ( resp.) .1 1 . positive negative maximal correlation= = −�  
 
If and only if 1=�  (maximal correlation) there exist real constants 1, ,2a a b  with 
 

0.=1 1 2 2+ +a Y a Y b  
 
If one relabels the random variables Y1  and Y2  by 
 

( )=1 1 + >0, realY aX b a b  
 
and 
 

( ),=2 2 + >0, realY cX d c d  
 
then the correlation coefficient between Y1  and Y2  is the same as the correlation 
coefficient between X1  and X2 : 
 

, , .=Y Y X X� �
1 2 1 2

 

 
(This property especially shows that the correlation coefficient is a quantitative measure 
for the linear association between two random variables.) 
 
If a random d-dimensional vector X  has the covariance matrix 
 

( ) 1,...,

1,...,
=

=

= = σ j djk
k d

ΓX Σ   (4) 

with  

( ) ( )

( )
var

,

⎧ =⎪= ⎨
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cov

j
jk

j k

X j k

X X j k,
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then 
 

( )
( ) ( )

,
cov ,
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= =

σ

σ σj k

j kjk
X X

jj kk j k

X X

X Xvar
�   (6) 

 
is the correlation coefficient between two components of X,  say, jX  and kX . 
 
Given a (mathematical) sample X ,...,X1 n  with  
 

, 1,...,i
i

i
i
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X

X
1

2
X ), the correlation coefficient 

,= X X1 2
� �  

 
is estimated by the (ordinary) sample correlation coefficient 
 

( )
( )( )

( ) ( )
1

2 2

1 1

ˆ ˆ
i i

i

i i
i i

=

= =

− −
= =

− ⋅ −

∑

∑ ∑

i i

i i

� �

n

n n

X X X X
n

X X X X

1 1 2 2

1 1 2 2

 (7) 

with  

1

1
i

i=
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n
X X
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1

1 .i
i=
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n
X X
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If 
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

X

X
1

2
X  is normally distributed with the covariance matrix 

 

,
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then the density of X : 
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has the following form 
 

( )

( ) ( )( ) ( )

( )
2 2

1
2
12
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2
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−
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with 
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  (12) 

 
In this case 
 
ˆ ,= iXμ 11   (13) 

 
ˆ ,= iXμ 22   (14) 

 

( )2
1

ˆ ,i
i=

= −∑ i

n
X X

n
σ 1 1

1
11   (15) 

( )2
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ˆ ,i
i=
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n
X X

n
σ 2 2

1
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and   ( )( )
1

ˆ i i
i=

= − −∑ i i

n
X X X X

n
σ 1 1 2 2

1
12   (17) 

 
are the so-called maximum likelihood estimators of , , ,μ μ ,σ σ1 2 11 22  and σ12  resp. 
(compare Statistical Inference), that means 
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with the likelihood function L: 
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1
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( ( ),..., ; , , , , , ,..., ,\2

1 1: n nL L μ μ σ σ σ1 2 11 22 12 ∈x x x x is the density function of 

the 2n -dimensional random vector ( )...= T
n1X X X ). 

 
Furthermore, it holds 
 

ˆ
ˆ ,

ˆ
⎛ ⎞ ⎛ ⎞
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1 ,
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

σ σ
σ σn
11 12

12 22
 

 
and the sample covariance matrix 
 

ˆ ˆˆ
ˆ ˆ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

σ σ
σ σ
11 12

12 22
Γ   (22) 

 
has the (probability) density 
 

( ) ( )ˆ 11 11ˆ
ˆ
ˆ

, , , ,⎛ ⎞
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⎜ ⎟
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  (23) 
 

with the Gamma-function ( ) ( )1 .− −= ∫ p tp t t pe d >0
∞

0

Γ:Γ  

This implies the (probability) density ˆf�  of the sample correlation coefficient 
 

( ) ( ) ( )
( )

1 4
2 2
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2

1
0ˆ

if 

elsewhere

2 1 1 1
1 1

0

− − −

−
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⎪
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∫
n n n

n

n x x
r r
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�
�π

2
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d

 (24) 

 
and the sample function (statistic) 
 

2

ˆ
2

ˆ
= −

−
T n

1

�

�
  (25) 

is t-distributed with 2−n  degrees of freedom. 
 
Thus to test the hypothesis 0 : 0=H � (versus the alternative : 0≠AH � ) one uses the 
statistic (25). 
 
The problem is somewhat difficult if one wishes to test the hypothesis 

( )0 0 0 0: ,=H <1� � � �  is specified, versus the alternative (hypothesis) 
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0: ≠AH � � (That means, the correlation coefficient is assumed equal to a given 
value 0� .). In this case R.A. Fisher (1921) (cf. Nollau, V. and Srivastava, M.S. and 

Carter, E.M.) suggested a transformation (Fisher’s Z-transformation, c.f. Eq. (74)):  
 

ˆ1 1ln
ˆ2 1

=
−

Z
+�
�

  (26) 

  

with   
( ) ( )and

1 1 1ln var .
2 1 2 1 3

= =
− − −
� �
�

+
+Z Z
n n

E  (27) 

 

With ( ) ( )11
2 1 2 1ln 1− −

= −ζ + + < <1� �
� �

n
 Fisher’s Z-transformation has asymptotically 

a normal distribution ( )1
3, ,−nζΝ  if the sample size n  tends to infinity. Hence, under 

the hypothesis 0 0: =H � �  the test statistic 
 

( ) 3− −ζZ n0   (28) 
 
with  
 

( )
( ) ( )

ˆ11 ˆ ˆln ,
ˆ2 1

= =
−
n

Z n
n

+�
� �

�
    (cf.Eq.(7)),  (29) 

 
and  
 

( )
1 1ln
2 1 2 1

=
− −

ζ
n

+
+0 0

0
0

� �
�

  (30) 

 
is asymptotically standardized normally distributed. 
 
The asymptotic distribution of Z also implies that an asymptotic confidence interval for 
�  is  
 

1
3 3
− −⎛ − ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟ = −
⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

α α

α
Z z Z z

n n

1 1+
P tanh < <tanh2 2�  (31) 

 
for a given confidence level ( )1 1 .−α α< <0  
 
Moreover, an asymptotic test for comparing the correlation coefficients �1 and �2  of 
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two normally distributed random vectors X  and Y  can also be constructed by Fisher’s 
transformation: 
 
Let 

( ), ,..., 4
⎛ ⎞⎛ ⎞ ⎛ ⎞

= = = ≥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 2

1

1
1

111 12
1

21 22 1

n
n

n

XX X
n

X X X
X X X   

and                                                                                                                  (32) 
 

( )1 , ,..., 4
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= = = ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

2
2

111 12
2

121 22

n
n

n

YY Y
n

YY Y2Y Y Y  

 
independent random samples from two two-dimensional normal populations 

( )11 ,N 1 Σμ  and ( )2 2,N 2 Σμ  with the expectation vectors 

 
( )
( )

1,...,

1,..., ,
i

i

i

i

= =

= =

X

Y
1

2

n

n

1

2

μ

μ

E

E
 

 
the covariance matrices 
 

( )

( )

1,...,

1,...,

i

i

i

i

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠

σ σ σ

σ σ σ

σ σ σ

σ σ σ

2
11 11 12

2
11 12 12

2
21 21 22

2
21 22 22

Γ

Γ

1
1 1

1

2
2 2

2

n

nY

�

�

�

�

X Σ

Σ

      

 
and the correlation coefficients 
 

( )
( )

,

,

1,...,

1,..., .
i i

i i

i

i

= =

= =

� �

� �
X X

Y Y

n

n
1 2

1 2

1 1

2 2

 

 
Under the hypothesis 0 : =� �H 1 2  (“The correlation coefficients of both the 
populations are equal.”) the (test) statistic 
 

3 3

−
=

− −

Z Z
T

n n

1 2

1 2

1 1
+

  (33) 
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with 
 

and
ˆ ˆ1 1 1 1ln ln ,
ˆ ˆ2 2 1

= =
− −
� �
� �

Z Z1 2
1 2

1 2

+ +
1

  (34) 

( )( )

( ) ( )
1

2 2

1 1

ˆ
i i

i

i i
i i

=

= =

− −
=

− ⋅ −

∑

∑ ∑

i i

i i

n

n n

X X X X

X X X X

�

1

1 1

1 1 2 2

1

1 1 2 2

  (35) 

 

    and      
( ) ( )

( ) ( )
1

2 2

1

ˆ ,
i i

i

i i
i i

=

= =

− −
=

− ⋅ −

∑

∑ ∑

i i

i i

�

n

n n

Y Y Y Y

Y Y Y Y

2

2 2

1 1 2 2

2

1 1 2 2
1

 (36) 

 

( )
1 1

and
1 11,2i i

i i= =
= = =∑ ∑i i

1 2

1 2

n n

j j j jX X j Y Y
n n

 

 
is asymptotically standardized normally distributed. 
 
Thus the hypothesis is to reject, if for a realization t of T  based on concrete samples 
(cf.Eq. (32)) holds −α

2
t z1>  with respect to a given significance level 

( )1−α α0< <1 . 
 
- 
- 
- 
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