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Summary 

One part of the cooperation of the statistician with the experimenter is the design of 
experiments. This should be done in the framework of a statistical model describing the 
statistically important features of the experiment. This paper starts with a brief overview 
of the linear regression model, which is universal. Here, the amount of information 
which can be obtained from an experiment is expressed by the Fisher information 
matrix, or geometrically by the ellipsoid of concentration. This leads straightforwardly 
to the basic optimality criteria. In Section 4 Kiefer's conception of design measures is 
presented briefly, as well as the main consequences of using it: the necessary and 
sufficient conditions for optimality of a design, the rule for checking approximate 
optimality, the main idea how to construct iterative methods of computation. In Section 
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5 the design for the optimum allocation of the times of observations of a random 
process is considered. In general, the results from a linear model can be extended to 
nonlinear models when the number of observations is large. However, then the 
information matrix depends on the unknown parameters, and this is discussed in Section 
6. At the end one discuss briefly how to express the amount of information obtained 
from a nonlinear experiment when the number of observations is small. For that purpose 
the probability distribution of the estimators and the entropy measure of information are 
considered. 
 
1. Introduction 
 
A physical (chemical, biological, technological) experiment is a series of activities 
aimed at obtaining information from observed (measured) data. In a broad sense the 
design of such an experiment is any well-thought organization of these activities. 
 
Modern experiments cannot avoid the use of statistics while dealing with data. 
However, each statistical procedure is adequate within a certain model of the 
experiment under consideration. Although some sciences developed highly 
sophisticated models (e.g. physics) for their experiments, statistics is reducing them to a 
restricted class of statistical models, which are relatively simple and universal. It is that 
universality of statistical modeling, which allows statisticians to deal with very different 
experimental situations from a common point of view. 
 
The basic model assumption of statistics is that a large amount of nuisance effects, 
which influence the outcome of the experiment (e.g. the errors of observation, the non-
stability of experimental conditions, influence of different side-effects), can be treated 
as random, and in a well designed and well treated experiment the influence of such 
effects can be substantially suppressed by probabilistic methods. This is why statistics 
uses probability theory, and the present success of statistics in applications justifies this 
approach. 
 
However, the assumption of a probabilistic description of data is not a sufficient model 
assumption, and further assumptions must be made. This should be done leaving 
freedom to adapt the model to the data and/or to any prior knowledge about the object 
investigated in the experiment. 
 
Thus modeling and data processing are often inseparable, dual parts of a statistical 
approach to the experiment. Without making some prior assumptions on the model, one 
can not understand the result of the statistical procedures, and conversely, only the 
results of statistical investigations often justify the use of a statistical model. 
 
But the described approach of the statistician to an experiment would be very passive, if 
he/she did not consider the possibility also to enter into the preparation of the 
experiment by giving his/her advice concerning the design of the experiment. A design 
should be presented before performing the experiment. On the other hand, a good 
design should be adapted to the choice of the model, and to the choice of statistical 
procedures for processing the data. Again, strictly speaking, design, modeling, and data 
processing are related parts of the cooperation of the statistician with the experimenter. 
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To be able to separate the design activities from modeling and data processing, it is 
usual to investigate design procedures mainly in the simplest, very universal models, 
(linear models) and for the simplest and also very universal statistical procedures, like 
least squares. Progress in other, more sophisticated models is often related to some 
universal approximations, like those obtained from the asymptotic properties of 
estimators. 
 
A few words should be said here about the history of experiment design. The concept of 
a well prepared experiment goes back as to the 14th century however, as a pioneer of 
what could be called a statistical approach to designing an experiment is often cited A. 
Young (1741-1820), a specialist in agricultural experiments. It is also in agriculture that 
"the Newton of contemporary statistics", R.A. Fisher (1890-1962) formulated his 
conception of design of statistical experiments simultaneously with building the analysis 
of variance. His approach forms the base of what is called today the combinatorial 
design of experiments. It requires advanced combinatorial methods, tools like projective 
geometries, etc. Consequently, this research is followed today not only by statisticians, 
but also by some "pure mathematicians" interested in combinatorial methods. 
 
In parallel, another approach has been developed, which is called the optimum 
experiment design. Its origin is in problems of getting a good "response" to a given 
"stress" (say in biological experiments) or to estimate an important physical parameter 
with the highest precision possible. It is also related to the traditional mathematical 
problem of finding the optimal allocation of nodes in polynomial interpolation and 
extrapolation. The start of a systematic research in optimum design is related to the 
name of J. Kiefer (1924-1981), although he had several predecessors, among which the 
most famous is G. Elfving (1908-1984). 
 
The work of J. Kiefer is a sophisticated mathematical work, but his important idea, 
which opened the later development, is in fact a simple reformulation and 
approximation of the concept of experiment design (See Section 4.1). This changed the 
design problem to a specific problem of convex analysis, although it seems that only 
later the convex aspects of the whole theory have been emphasized and fully exploited. 
Today there are several books on the subject. 
 
On the present research level, besides bringing this theory to a higher mathematical 
perfection, interest is also in problems which go outside the scope of the convex theory: 
design for the observation of random processes, design on non-asymptotic criteria in 
nonlinear statistical models, design for nonparametric estimation, but still there are new 
and sophisticated results on classical problems, as in the polynomial inter- and 
extrapolation. 

2. Linear Models 

Statistical models are often used to model the influence of some (input) factors on the 
output of an experiment. In many cases such models are linear in some unknown 
parameters, and are called linear regression models. 
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Probably the most widely used are the ANOVA models and the factorial models, which 
are presented here as examples. 
 
In ANOVA (= analysis of variance) models one describes the influence of, say two 
treatments A, B on the outcome of the experiment (say the yield of some plant). In each 
trial one can choose levels of A and of B which are denoted symbolically by i, j. The 
outcome of the experiment yij is modeled by 
 

ij i j ijy μ α β ε= + + +  (1) 
 
where αi  and βj are the contribution of the treatments A  and B respectively to the 
outcome yij, μ is some "mean effect", and εij is the component of the outcome, which is 
supposed to be random (in the term εij are included many secondary effects which the 
experimenter did not take into account). Further parameters may appear in the model 
when it is supposed that the treatments A, B may interact, or when there are further 
treatments. Also some of the parameters may have different interpretations (e.g. block 
parameters), but the model remains as the simplest linear model, very universal, as 
proved in practice. 
 
Other universal linear models are factorial models. They are used when k qualitative 
factors x1,…, xk influence the outcome of the experiment modeled by some function 
h(xl,…, xk), where however, h(⋅) is either unknown or is too complicated to be used. 
Therefore one can proceed as follows: one finds some reference level xo = (x1

o,…, xk
o) 

of the vector of factors x = (x1,…, xk), and by the Taylor formula applied on h(x) one 
obtains an approximate model. The "order" of the factorial model depends on the 
number of terms used in the Taylor formula. For example, the second order factorial 
model has the form 
 

1 , 1( ) ( )( )k ko o o
o i i i ij i i j ji i jx x x x x xθ θ θ= =+ − + − −∑ ∑  

 
where 2( ), ( ) , ( )o o

o
o i i ij i jx x x x

h x h x x h x x xθ θ θ= =
= = ∂ ∂ = ∂ ∂ ∂  are 

unknown parameters, which are to be estimated from the results of observations. 
Evidently, the factorial model remains linear in the unknown parameters also if higher 
order terms are considered. 
 
In many physical or chemical experiments the outcomes of the observation depend on 
some important physical parameters, denoted here by θ1,…, θm, according to some 
"physical law". So we know that the observed value yi in the ith trial is 
 

1( , , )i i m iy η θ θ ε= +…  
 
with known functions ηi(⋅) of the (unknown) vector of parameters θ = (θ1,…, θm)T . The 
functions ηi(⋅) may be linear, but also nonlinear. In the latter case, a procedure often 
used (e.g. in geodesy) is to specify a value of θ, say θo, and to use the approximate 
linear model obtained again by the Taylor formula 
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( )( ) ( ) .i
ok

o o
i i k k iky ηη ε∂

∂ =
= + − +∑ θ

θ θ θ
θ θ θ  

 
Here the derivatives are known, and the parameters θk, which are to be estimated, enter 
linearly. 
 
In vector notation the linear model is described by 
 
y = Fθ+ ε  

2( ) . Var( )E σ= =   ε 0 ε W  (2) 
 
where N∈y R  is the vector of observed values, F is a given N×m matrix, ε is the error 

vector which is random, the variance parameter σ and the vector m∈θ R  are unknown, 
and the matrix W is supposed to be known. Usually W = I, which means that the 
observations are uncorrelated and with constant variance, but sometimes, e.g. when a 
sample from a random process with a given covariance function is observed, one has W 
≠ I. Notice that in general we denote by E the mean, and by Var the variance, or the 
variance (covariance) matrix. 

3. How to Measure the Information Obtained from an Experiment Modeled 
Linearly? 

3.1. Information Matrices 

Statistics is an information science, so the problem of evaluating the amount of 
information obtained from an experiment is a crucial problem. In linear models this is 
done straightforwardly as follows. 
 
We consider the estimator of the parameter vector θ in (2), which is unbiased and which 
has the minimum variance matrix (i.e. which is the most precise in a wide sense). It is 
obtained by minimizing a "weighted sum of squares" 
 

1ˆ arg min [ ] [ ]m
T −

∈
=

θ
θ y - Fθ W y - FθR  

 
which in case of a non-singular matrix 
 

1T −M = F W F  
 
is equal to 
 

1 1ˆ T− −=θ M F W y  
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( θ̂  is called the Gauss-Markov estimator or, in case of normal errors ε, the maximum 
likelihood estimator). The experiment is considered to give much information about θ if 
the variance matrix of θ̂  
 

2 1ˆVar ( ) σ −=θ M  
 
is "small" , that means if the matrix M is "large" in a certain sense. So, in a linear model 
(2) measures of information should be based on the matrix M. Even if M is not full 
rank, and consequently the estimator θ̂  is not specified uniquely, one can still estimate 
some parameter functions of the form hTθ, and, in that case hT θ̂  is unique, and 
 

2ˆVar( ) .T Tσ −=h θ h M h  
 
Here M− is any g-inverse of M, i.e. any solution of the equation 

.-MM M = M  
 
Again, a large M means more information obtained from the experiment. Further 
arguments in favor of the fact that the matrix M expresses the information obtained 
from the experiment are: 
 

1. the matrix M is known generally in statistics as the Fisher information matrix 
(for σ = 1) 

2. σ2hTM−h is the lower bound of the variance of any unbiased (linear or 
nonlinear) estimator of the parametric function hTθ (the Rao-Cramer bound). 

3. asymptotically, i.e. for a large amount N of observations, σ2M−1 specifies the 
approximate variance matrix for many other estimators of θ in model (2) (the 
nonparametric estimators, the Bayesian estimator, the ridge estimator). 

 
Notice however, that one can loose the justification for using the matrix M to measure 
the information if one considers so called robust estimators of θ. In fact, robust 
estimators are used only if it is supposed that the model assumptions in model (2) are 
violated (by the presence of so called "outliers"). 

3.2. Information Matrices for Parameter Subsets 

The matrix M is the information matrix for all parameters cc. If we are interested only 
in a parameter subset, say 1,..., sθ θ  with s m< , the corresponding information matrix 
is expressed by 
 

( )
11 12 22 21( )s −= −  M M M M M  (3) 

 
where the used g-inverse is arbitrary, and where 
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⎛ ⎞
⎜ ⎟
⎝ ⎠

11 12

21 22

M M
M =

M M
 

 
is a block decomposition of M, with M11, being a s × s matrix. The fact that the matrix 
M(s) is the information matrix is justified by the equality 
 

2 ( ) 1
1̂

ˆ( , , ) ( ) .T s
sVar θ θ σ −⎡ ⎤ =⎣ ⎦ M…  

3.3. Geometrical Presentation of the Information Contained in the Experiment 

It is useful to consider the set 
 

{ }: 1m T= ∈ ≤z z MzRE  

 
which is called the ellipsoid of concentration of model (2). It is an m-dimensional 
ellipsoid if M is non-singular. It is an ellipsoidal cylinder when M is singular. The set 
E  characterizes the concentration of the probability distribution of the estimator θ̂  
around the true value of θ. A small E  means a concentrated distribution of the 
estimator θ̂ . The set E  depends exclusively on the information matrix M, so to 
consider E  is in the spirit of the previous section. 
 
Moreover, one knows some important and interesting properties of E : The volume of 

E  is proportional to ( ) 1 2det⎡ ⎤⎣ ⎦M . For any m∈h R  one has that ( )ˆTVar h θ  is 

proportional to ( )2
max T

∈z h zE . In particular, when ||h|| = 1 one has that 

( ) 1 21 ˆTVarσ − ⎡ ⎤
⎣ ⎦h θ  is simply the length of the projection of the ellipsoid E  onto the 

straight line defined by the vector h. As a consequence of this property we have also 
further properties of E : The radius r of the smallest ball containing the set E  is equal 
to 
 

2 2
, 1

ˆmax ( ) .m
T

h hr Varσ −
∈ =

= h θR  

 
The half-diagonal d of the parallelepiped having faces parallel to the coordinate planes 
is equal to 
 

2 2
1

ˆ( )m
iid Varσ θ−

== ∑  
 
etc. So many geometrical features of the ellipsoid of concentration express in some way 
how good the experiment under question is. 
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3.3.1. The Ellipsoid for Parameter Subsets 

One can construct the ellipsoid of concentration for any parameter subset, say for 
1,..., sθ θ  with s m< , 

 
( ) { }( ) ( ): 1s s T s= ∈ ≤z z M zRE  

 
where M(s) is the information matrix for the parameter subset given by (3). The 
interpretation is the same as forE , but for 1,..., sθ θ  instead of 1,..., mθ θ . 

3.4. Optimality Criteria 

One can read from the properties of the ellipsoid of concentration some classical 
optimality criteria. 
 
In general, an optimality criterion is a function Φ(M) of the information matrix M, 
interpreted so that a small value of Φ(M) means a good quality of the experiment. This 
is traditional. Sometimes, it is proposed to take Ψ(M) = −Φ(M) instead of Φ(M), and 

call Ψ (M) "the information functional". 
 
A particular choice of the function Φ means to consider the information obtained in the 
experiment from a particular point of view. 
 
Examples of well known optimality criteria are: 
 

( ) ln[det( )] the D-optimality criterionΦ = −M M """"""  
 

1
1

ˆ( ) ( ) ( ) the A-optimality criterionm
ii

tr Var θ−
=

Φ = − ∑M M ""�  
 

1 1
min , 1

( ) ( ) max m
T the E-optimality criterion.− −

∈ =
Φ = −

h h
M M h M h ""�λ R  

 
Here tr denotes the trace of a matrix, min ( )Mλ  denotes the minimum eigenvalue of M. 
 
These criteria are used when all parameters are important. One can call them global 
criteria. When only the parameters θ1,…, θs are important, and the others are considered 
as nuisance parameters, one uses criteria of the form Φ(M(s)) called partial criteria. Here 
the function Φ is defined as above, and M(s) is the information matrix for the parameters 

1,..., sθ θ  as defined in (3). So we can consider partial D-optimality, partial A-
optimality, etc. Of course, there are many possibilities to construct new optimality 
criteria. A criterion must be statistically meaningful, and it must express somehow the 
information obtained from the experiment. 
- 
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