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Summary 
 
Numerical simulation of global climate models is the major method for examining the 
changes of contemporary climate under the impact of anthropogenic influences. General 
circulation models of the atmosphere and ocean are the basis of global models of 
climate. The development of these models in the last decades was spurred by vigorous 
development of numerical mathematics and computing facilities. 
 
There is a specific feature of the modeling of climate and especially its future changes: 
it is impossible to carry out direct physical experiments with the climatic system to 
determine its sensitivity to small external impacts.  It is very important, in this 
connection, to examine the sensitivity of the climatic system on the basis of the theory 
of attractors of dissipative semidynamic systems. At present, serious results were 
obtained in this direction, however many problems remain unsolved.  The solution of 
these problems would allow one to approach the  grand problem: the control of climate. 
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1. Introduction 
 
The prediction of climate changes induced by anthropogenic processes is one of the 
most important challenges for science in the 21st century.  Anthropogenic impacts on 
the climatic system include the combustion of fossil fuels leading to the increase in the 

2CO concentration in the atmosphere, changes in the concentration of small gaseous 
species that control the ozone concentration in the atmosphere, deforestation and 
desertification resulting in changes in albedo, and many other impacts. 
 
Unlike many other problems of physics, these have a distinguishing feature: they do not 
allow a direct physical experiment.  Moreover, adequate laboratory experiments also 
seem to be questionable because of specific features of the climate system.  In fact, from 
the standpoint of large –scale atmospheric processes, the atmosphere is a thin layer with 
the ratio between vertical and horizontal scales 3 4H / L 10 10ε − −= ÷∼ ;   at the same 
time, vertical distribution of parameters in this layer is very important.  Therefore, the 
method of numerical simulation of global climate models is the main research tool in 
this case. 
 
We need several definitions to describe these models. 
 
The climatic system is understood as including the atmosphere, ocean, cryosphere, land, 
and biota. 
 
The state of the climatic system is characterized by a set of distributed parameters: 
temperature, pressure, humidity, velocity of wind in the atmosphere and of currents in 
the ocean, concentration of gaseous components, etc. 
 
The climate is an ensemble of states passed by climatic system for a sufficiently long 
period.  Generally speaking, the choice of such a period is a problem: in what follows, 
we always specify the time interval when we make strict statements. 
 
From a physical standpoint, to examine the climate of the real climatic system, we have 
only a portion of the trajectory several decades long, during which adequate field 
measurements were carried out. Naturally, we can restore some characteristics of the 
climatic system for longer time intervals; however, this concerns only individual 
characteristics rather than a sufficiently complete set characterizing the state of climatic 
system. 
 
The construction of modern climate models is based on  the following principles. 
 
   The model is constructed so as to sequentially account for all the processes 

participating in the formation of climate, even if the contribution of some processes 
to the total energy of the overall process is relatively small.  Such an approach is 
conditioned, in particular, by the fact that the theory of climate’s sensitivity to small 
external impacts is not yet completely developed.  

 It is assumed that the Navier–Stokes equations for a compressible fluid describe the 
dynamics of the atmosphere and ocean (in describing the ocean’s dynamics, as a 
rule, incompressibility is assumed). 
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   In modern models, by virtue of the computational facilities, the Reynolds equations 
are employed rather than the Navier–Stokes equations. The Reynolds equations are 
the Navier–stokes equations averaged over certain temporal and spatial scales 
observing certain commutation rules for the averaging operators. 

   It is assumed that a closure procedure is principally possible at a certain level of 
accuracy: the expression of subscale processes (the scales smaller than the average 
scale) through the characteristics of large–scale processes. 

 It is assumed that the equations of classic equilibrium thermodynamics are locally 
valid. 

   As a rule, modern climate models use the hydrostatic approximation to describe 
large-scale atmospheric and oceanic motions: the vertical pressure gradient is 
compensated by the gravity force.  The use of such an approximation involves a 
number of further simplifications: it is required that the energy conservation law 
must be satisfied in the absence of external sources of energy and dissipation. In 
particular, the earth’s radius is taken to be constant and the components of Coriolis 
force with vertical velocity component are disregarded.  The hydrostatic 
approximation reduces the system of three–dimensional Navier-Stokes equations to 
the system of “2.5 –dimension”, which is significant in formulating the theorems 
concerning unique solvability of these equations on an arbitrarily finite time 
interval. 

 
The climate model formulated on the basis of these principles (more precisely, its 
finite–dimensional version) makes it possible to carry out numerical experiments 
reproducing the contemporary climate and investigate the sensitivity of the “model 
climate” to small changes in the parameters characterizing the external impacts.  
However, a question arises: what should the climate model reproduce and with what 
accuracy to ensure that its sensitivity to small changes in external impacts be close to 
the sensitivity of real climate system?  A partial answer to this question can be obtained 
in the framework of the theory of dissipative semidynamic systems. 
 
It is important to emphasize that each modern model of a concrete physical 
phenomenon is a reflection of contemporary comprehension of the related process.  
Global climate models which describe a great number of diverse physical processes and 
their interactions are not an exception in this sense. At present, climate models 
experience a period of vigorous development spurred by an explosive development of 
computer technologies.  Therefore, we do not consider in detail the parameterization of 
subscale processes in modern climate models, since these parameterizations are being 
developed continuously.  It is sufficient to mention the parameterization of the 
formation and transport of clouds and their interaction with radiation.  We also avoid 
presenting the stimulation results for concrete characteristics of contemporary climate, 
since these results are being continuously improved.  Consequently, the focus here is on 
the established mathematical results of the investigation of climate models and to the 
scientific directions that are of great importance in the history of climate studies. 
 
Historically, general circulation models of the atmosphere and ocean were a basis for 
the development of climate models. 
 
The first numerical model of the general circulation of the atmosphere was constructed 
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by N.A. Phyllips.  He also has proposed the σ -coordinate system which is very popular 
nowadays.  Systematic investigation of the role of various physical factors in forming 
the circulation of the atmosphere was started by J. Smagorinsky.  The first coupled 
circulation models of the atmosphere and ocean were constructed by S. Manabe and K. 
Bryan.  Numerical methods for solving the hydrodynamic equations of the atmosphere 
and ocean were developed due to significant contributions of the international scientific 
community. A. Arakawa proposed the computational method preserving two quadratic 
invariants for a two-dimensional incompressible fluid. S.Orszag proposed the method of 
spectral–mesh transformation, which made the spectral methods widely used in the 
general circulation models of the atmosphere. G. Marchuk’s Siberian school developed 
a whole class of implicit methods for solving the hydrodynamic equations governing the 
atmosphere and ocean and, in particular, the splitting method.  Qualitative examination 
of the thermohydrodynamic equations of the atmosphere and ocean was started by the 
works of the scientists of Russian and French schools. 
 
2. Mathematics for Climate Modeling 
 
2.1. “Ideal" Model of Climate 
 
“Ideal” model of climatic system that generates the observed trajectory of climatic 
system possesses the following properties: 
 
• The “ideal” model is described by the system of partial differential equations and 

belongs to the class of dissipative semidynamic systems. 
• The “ideal” model has a global attractor. 
• The trajectory generated by the “ideal” model lies on its attractor. 
•   Trajectories on the model’s attractor are unstable in the sense of Lyapunov.  The 

dynamics on the attractor is chaotic and ergodic, i.e., the trajectories originated from 
almost all points of the attractors are everywhere dense on the attractor. 

 
The last assumption is very important, since it opens a possibility to compute the 
attractor’s characteristics possessing only one trajectory (realization). 
 
Assumptions 2 and 3 allow the reformulation of the concept of climate through the 
characteristics of an attractor of “ideal” model.  In particular, if the sense of a 
“sufficiently long time interval” is understood as an infinite interval, then the climate is 
understood as an attractor (set) with an ergodic invariant probabilistic measure 
generated by chaotic dynamics of the “ideal” model specified on this attractor. 
 
The closeness of certain climate model to the “ideal” model should be regarded as the 
closeness of the above characteristics of the attractors of climate models.  In reality, the 
goodness of the solution is measured in terms of closeness only at certain instants of 
time or even of their projections on certain subspaces of the original phase space . 
 
Most of climate models used in climate investigations can be reduced to the canonical 
form. 
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with the help of generally nonlinear transformations.  Here, ϕ  is the vector function 
characterizing the state of the system,ϕ∈ Φ; Φ  is the phase space of the system which is 
regarded as a Hilbert space with the inner product ( ), ;⋅ ⋅ ƒ is the external impact which 
can depend on the solution; S is positive definite operator describing the dissipation in 
the system: 
 
( ) ( ), 0.μ , μ≥S ,ϕ ϕ ϕ ϕ >  
 

( )Κ ϕ  is the skew-symmetric operator linearly depending on the solution: 
 

( )( ), 0.=Κ ϕ ϕ ϕ  
 
It is clear that, when , 0,≡f S there is the quadratic conservation law in the system: 
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System (1) belongs to the class of dissipative systems, since it has the absorbing set: 
                                                                                                                     

.
μ

≤
& && & f

ϕ   (3) 

 
Qualitative examination of each concrete climate model means the establishment of the 
following statements: 
 

 Global theorem of solvability for (1). 
 The existence of global attractor. 
 The estimation of the attractor’s dimension. 
 The examination of the attractor’s structure and its stability. 

 
In what follows, we discuss these statements when formulating each new climatic 
model. 
 
2.2 Finite–dimensional Approximation of Differential Climate Models 
 
Equations of climate models are strongly nonlinear, therefore, the only way to examine 
the behavior of their solutions, attractor structures, and response to small perturbations 
of external impacts is to construct their finite-dimensional approximations. 
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Strictly speaking, each concrete finite-dimensional approximation of differential climate 
model should be regarded as an individual climatic model, since it is necessary to solve 
the parameterization problem for the subscale processes.  The choice of spatial 
resolution determines spatial scale; the latter implies the solution of an inverse closure 
problem, which is also an individual problem.  Form this standpoint, it is convenient to 
consider the approximation problem sequentially: first, the system of ordinary 
differential equations is first approximated with respect to spatial variables and then in 
time. 
 
Let a spatial finite-dimensional version of system (1) have the form                                    
                                                                          

( )
0

h
h

t 0 h

f S

,=

+ ⋅ = −

= Φ

h
h h h

h h h

d
K

dt
ϕ

ϕ ϕ ϕ

ϕ ⏐ ϕ ϕ ∈
  (4) 

 
The solvability problem for system (4) is not complicated any more. We require that 
finite dimensional approximations of the operators h hK ,S  also possess the properties of 
skew-symmetry and positive definiteness, respectively: 
           

( ) ( )h h h, 0, S ,μ= ≥
h

h h h h
h hK ϕ ϕ ϕ ϕ ϕ ϕΦ ,   (5) 

 
It follows from (5) that, when     h hf ,S 0,≡    an analogue of the energy conservation 
exists in (4): 
 

( )
h

h h, 0=
d
dt

ϕ ϕ
Φ

 

 
(Here, ( )

h
,⋅ ⋅ Φ is the inner product in Euclidean space). Moreover, (5) implies the 

existence of an absorbing set for (4) and the existence of a global attractor in this case 
for the finite-dimensional system (4) becomes an almost trivial fact. Strictly speaking, 
when constructing finite-dimensional approximations of system (4), one must prove the 
theorems about the closeness of attractors of systems (4) and (5). Such closeness must 
be proved in the Hausdorff metrics: 
 

( ) ( ) ( )( )Hdist A,A max dist A,A , dist A ,A ,=h h h   
 
where  
 

( ) ( )B Adist A,B sup inf ,∈ ∈= y x x,yρ   
 
( ),x yρ  is the metric of the space NR ∗ , A is the finite-dimensional attractor of 

system(4), and Ah is the attractor of system(5). 
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Here, a new definition of the approximation of finite-difference schemes arises:  the 
approximation of asymptotic sets.  At present, unfortunately, the theorems of closeness 
of the attractors of differential problems and their finite-dimensional operators have not 
been proved for all well-known climate models.  The establishment of closeness 
between invariant measures on attractors seems to be a much more complicated 
problem.  Since such theorems are also absent, the construction of finite-dimensional 
approximations of differential climatic models is a nontrivial task.  The approximation 
of energy intensive large-scale processes and the conception of a group of invariants of 
climate model in the absence of dissipation and forcing is the basis of such 
constructions. 
 
Of course, the total energy of system is the basic invariant; it can be reduced to 
quadratic form by nonlinear transformations.  There exists a number of invariants, 
whose conservation seems to be quite necessary in climatic (finite-dimensional) models.  
These are the mass conservation law and the conservation law for the angular 
momentum with respect to the earth’s axis of rotation that controls the distribution of 
winds near the earth’s surface. 
 
The atmosphere and ocean can be regarded as quasi-two–dimensional; consequently, 
“asymptotic” conservation laws are very important, being the conservation laws in the 
two-dimensional approximation.  Two quadratic invariants, the energy and the enstropy, 
determine, in a two–dimensional fluid, the energy distribution with respect to spatial 
scales. This is an important climate characteristic associated with the cascade of energy 
from small scales to larger ones.  In fact, it determines the required accuracy of the 
parameterization of subscale processes. 
 
3. Climatic Models 
 
In the introduction, the climate was defined as an ensemble of states passed by the 
climatic system over a sufficiently long time interval.  In the light of this definition, the 
climate model is understood as a model that reproduces this ensemble with acceptable 
accuracy. Consequently, the model that reproduces only certain characteristics of the 
ensemble cannot be regarded, strictly speaking, as a climatic model.  However, 
following the established tradition in the theory of climate, we regard all the models 
which reproduce some characteristics of climate as climate models. 
 
Here, the climate models are classified with respect to the dimension of the space in 
which they are constructed. 
 
3.1 Zero –dimensional Models 
 
The effective temperature can be defined by writing down the radiation balance 
equation for the whole system.  This is possible since the system receives an 
overwhelming portion of its energy from the sun.  Assuming that the climactic system 
radiates as a gray body, the radiation balance equation is written as 
                                                                                                           

( )4
e eT 1 I ,α= −γσ   (6) 
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where eI 1/ 4, I=  is the integral flux of Solar radiation, eα is the effective albedo of 
climate system, and  γ is the grayness coefficient. 
 
3.2 One–dimensional Models    
 
The class of one-dimensional models includes radiation models, radiation-convection 
models, and diffusion–convection models.  The first two-models are obtained by 
averaging the heat transport equation over horizontal coordinates: 
                                                                                                            

( ) ( )dT
dt

=
z

zε   (7) 

 
Here, ( )zε  denotes radiative heat fluxes distributed along the vertical coordinate.  In 
the case of radiation-convection models, it also accounts for the vertical mixing by the 
mechanism of effective convection. 
 
The models obtained by averaging the heat flux equation over the vertical coordinate 
and longitude belong to another type of models.  After certain closure procedure of the 
eddy heat fluxes, the heat transport equation takes the form: 
                                                                 

( ) ( )T 1 TK T, ,
t cos

∂ ∂ ∂
=

∂ ∂ ∂
f+ϕ ϕ

ϕ ϕ ϕ
  (8) 

 
where f  is the term describing the heat fluxes. The representation of the effective 

diffusion coefficient is a key factor in this model. In principle, it must depend on ∂
∂
T
ϕ , 

taking thus into account the development of baroclinic vortices in the regions with high 
temperature gradient. 
 
- 
- 
- 
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