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Summary  
 
We study the main classical mathematical methods for the study of discrete recurrence 
equations or continuous differential equations, arising in mathematical modeling.  
 
1. Discrete Time Models 
 
We will see in this section the basic tools for the development and analysis of such 
mathematical models. We will restrict ourselves to a rather general framework, because 
more specialized models are described in the following chapters, and after. As often in 
mathematics, the study of linear systems will give the grounds on which the study of 
more complex nonlinear models is based. The exposition will be at an elementary level.  
 
1.1. Making a Model 
 
The first steps of the modeling of a dynamical real system has been discussed already 
(see Mathematical Models, Basic Principles of Mathematical Modeling); without 
entering into details, it consists of isolating the system to be modeled from the rest of 
the world, and selecting inside this system some variables, called state variables, that 
will give a good description of the state of the system at time k . The time will be 
considered as discrete, i.e. we consider only the sequence of instants 0 1 k, , , ,… … , and 
describe the system for these instants only.  
 
It remains to write the equations giving the state at the instant ( 1)k +  in function of the 
state ( )x k . In general, the state ( )x k  at time k  will be a vector of n  variables 

1 2( ( ) ( ) ( ))nx k x k x k, , ,… , and the general system will be (if there is no input):  
 

1 1 1 2

1 2

( 1) ( ( ) ( ) ( ))

( 1) ( ( ) ( ) ( )).

n

n n n

x k f x k x k x k

x k f x k x k x k

+ = , , ,

+ = , , ,

…
# # #

…
  (1) 

 
Each domain has its own methodology for building models; in general, there is some 
laws giving part of the dynamics; moreover, a complex model is done often of more 
elementary parts, describing the interactions inside some subsystems of the system, and 
involving a limited number of variables. These parts or subsystems are often added with 
some weights describing the importance of the dynamic of the subsystem in the whole 
dynamic. The model can be linear (cf. the example below) or not.  
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The discrete model can be also the result of the discretization of some continuous 
model, with the goal of making it simpler or more easily implementable on a computer.  
 
For example, a dynamical model written as an ordinary differential equation with 
continuous time needs to be discretized in some way to be simulated on a computer; a 
numerical integration method (Euler, Runge-Kutta, ...) is needed to do that in the most 
accurate way. 
 
 Partial differential equations, having continuous variables in time and space, for 
example, need also to be discretized in time and space to be implemented on a 
computer.  
 
The model obtained after discretization is often of large dimension, and the solutions 
should be compared to the solutions of the original continuous model: the aim being 
that, for, in general, a small step size for the discretization, the two kinds of solutions 
are very similar. We here enter the large domain of numerical analysis.  
 
1.2. The State Space: Basic Vocabulary 
 
Consider the general system (1); it can be written in the more concise form  
 

( 1) ( ( ))x k f x k+ = ,  (2) 
 
where f  is some function associating an n -vector to another. Given an initial vector 
condition 0(0)x x= , the solution will be some vector 1 2( ( ) ( ) ( ))nx k x k x k, , ,…  evolving 
with time k .  
 
The usual graphical representation of this vector is the representation with respect to 
time : the time is on the X-axis, and the n  variables on the Y-axis. The state space is 
another way of seeing the system, very efficient, particularly for the low dimensions.  
 
The state space for the dimension 2 (two variables 1 2( ) ( )x k x k, ) is the representation in 
the plane of the point of coordinates 1 2( ) ( )x k x k, : the time does not appear explicitly. 
The dynamics is clear from this Figure 1: starting from a point (initial condition 0x ), the 
dynamical system “jumps” to another point, and so on.  
 
This representation enables to see (with the help of a computer) a more geometrical 
vision of the behavior; moreover, as will be seen in the next section, a classification is 
possible in this space. This space is also named the phase space. 
 
A point that does not move is called an equilibrium; it satisfies ( )x f x∗ ∗= ; a sequence 
of points jumping from one to the next (given by the equation of the system) is a 
solution. The initial point 0x  at time 0t =  is called the initial condition. 
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Figure 1. Time (left) and phase (right) representation in dimension two 
 
A point that does not move is called an equilibrium; it satisfies ( )x f x∗ ∗= ; a sequence 
of points jumping from one to the next (given by the equation of the system) is a 
solution. The initial point 0x  at time 0t =  is called the initial condition. 
  
In some cases, the system can be submitted to the action of external variables, that do 
not belong to the state variables: it could be, for example, the external temperature that 
will change the survival and reproduction rates in the Leslie models; these external 
variables are called inputs in the language of control theory (see Basic Principles of 
Mathematical Modeling). If there is some input ( )u k  depending on the time k , the new 
system is ( 1) ( ( ) ( ))x k f x k u k+ = , . 
 
1.3. Linear Discrete Equations 
 
Let us consider the simple example of the geometric growth (see Classification of 
models). The model is  
 

( 1) ( )x k ax k+ = . 
 
In particular, we wish to know if the population will decline or increase, and how it 
behaves for large times. This formalism and study is in fact at the basis of all the models 
we will write in the following. The model describes how the variables determining the 
state of the system at time k  will evolve at next time ( 1)k + . The initial condition gives 
the value of the state variables at time 0 . We wish to study the behavior of a solution 
starting from the initial condition, and describe it for any time.  
 
For the above example, the answer is simple, because the solution is ( ) (0)kx k a x=  
and therefore:  
• if 1a > , then the solution grows without limits (if (0)x  is not zero)  
• if 1a = , then the state stays always at the initial value (0)x   
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• if 1a < , then the solution goes to zero: the population goes to extinction.  
 
Even in this very simple discussion, we have used our knowledge of the physical 
meaning of the parameter a : we know that a  is positive because it represents a number 
of cells.  
 
Now we can consider the more general case (several variables) of a linear discrete 
system, also called difference equations. It plays a prominent role in the study of 
mathematical dynamic discrete models (similarly to its continuous analog: the linear 
differential equation).  
 
The system is supposed to be described by n  state variables 1 2( ) ( ) ( )nx k x k x k, , ,…  at 
instant k . We first list the variations around linear models. The simplest case is the case 
of a linear square constant matrix A  with n  rows and n  columns.  
 
1.3.1. The Homogeneous Constant Linear System 
 
A homogeneous constant linear system is described by ( 1) ( )x k Ax k+ = . 
The matrix A  is given by  
 

11 12 13 1

21 22 23 2

1 2 3

n

n

n n n nn

a a a a
a a a a

A

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=

…
…

# # # #
…

. 

 
To define a solution, we must give us an initial condition 0(0)x x= . As an example, 
consider the Leslie model (see Classification of Models):  
 

( 1) ( )x k Ax k+ =  
 
with  
 

2 3

1

2

0
0 0

0 0

F F
A P

P

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
1.3.2. The Homogeneous Time-varying Linear System 
 
A homogeneous time-varying linear system is described by  
 

( 1) ( ) ( )x k A k x k+ = . 
 
The matrix ( )A k  depends on the time k . Of course, it is a generalization of the above 
constant case.  
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As an example, let us imagine that the parameter of survival and reproduction and the 
Leslie model vary with the time (let us say the year) because of the variation of climate.  
 
1.3.3. The Non-homogeneous Linear System 
 
A non-homogeneous linear system is described by  
 

( 1) ( ) ( ) ( )x k A k x k b k+ = + , 
 
where ( )b k  is some forcing vector of dimension n  depending (possibly) on time.  
As an example, in the Leslie model, the vector  
 

2

0

0
b b

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
could represent the immigration of individuals coming from outside in the second age 
class.  
 
1.3.4. The Controlled Linear System 
 
In the above, the vector ( )b k  can be seen as an input, and can be written to make 
explicit the connection between the actual inputs of the system ( )u k  of dimension m , 
and the evolution equation. Thus we define a matrix ( )B k  of n  lines and m  columns, 
and write:  
 

( 1) ( ) ( ) ( ) ( )x k A k x k B k u k+ = + . 
 
This system is now relevant for Control Theory (see Basic Principles of Mathematical 
Modeling, Controllability, Observability, Sensitivity and Stability of mathematical 
models); we may also add outputs, describing the available measurements: 
 
 ( ) ( ) ( )y k C k x k= . 
 
1.3.5. Conversion to Matrix Linear Form 
 
The model can sometimes be described by an equation involving the state variable at 
different times k . Let us take the example of the linear difference equation:  
 

1 0( ) ( 1) ( ) ( )ny k n a y k n … a y k u k−+ + + − + + = . 
 
The model depend on the variable y  taken at times between k  and k n+ , n  is a given 
integer.  
 
Define the new state variable ( )x k  of dimension n  by:  
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( ) ( )
( ) ( )

( ) ( )

1

2 1

1 .n

x k y k

x k y k

x k y k n

=

= +

= + −

#
 

 
Then the system is a linear homogeneous system  
 

( 1) ( ) ( )x k Ax k Bu k+ = +  
 
with  
 

0 1 2 1

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
1n

…
…

A B
…

a a a … a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − − ⎝ ⎠

# # # # # . 

 
1.4. Basic Study of the Homogeneous Constant Linear System 
 
This case is the simplest one, but also the most important as a basis for the study of 
dynamical systems, either linear or nonlinear (the linear system being obtained by 
linearization of the nonlinear one, see below).  
 
The considered system is  
 

( 1) ( )x k Ax k+ =  
 
with an initial condition 0(0)x x= . The explicit solution is easily written as:  
 

0( ) kx k A x= . 
 
We suppose that the matrix A I−  is bijective for simplicity, then the origin is the only 
equilibrium, because the equation x Ax=  only has one solution.  
 
The following theorems give the basic behaviors of such systems: they are based on the 
notions of eigenvalue and eigenvectors.  
 
Theorem 1 Case 1 (asymptotic stability): if all the eigenvalues of the matrix A  are 
strictly less than 1 in modulus, then the solution goes to zero.  
 
Case 2 (instability): if one eigenvalue of the matrix is greater that one (in modulus), 
then the solution is not bounded for almost any initial condition.  
 
It is possible also to classify the behavior in the phase space (the space of the state 
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variables) into some cases giving a good and intuitive view of the situation. In the case 
of two variables, we obtain (we have concentrated on generic cases for simplicity):  
 
Proposition 1 Classification of behavior in the plane:  
 
• stable node: if the two eigenvalues are real of modulus lower than one, the solution 

converge toward the origin with two principal directions (the two eigenvectors).  
• stable focus: if the two eigenvalues are complex and conjugated with a real part 

lower than one, the solution converges along a kind of spiral towards the origin.  
• unstable node: if the two eigenvalues are real and of modulus greater than one, the 

solution becomes unbounded with two principal directions (the two eigenvectors).  
• stable focus: if the two eigenvalues are complex and conjugated with a real part 

greater than one, the solution converges along a kind of spiral towards the origin.  
• saddle : if one eigenvalue is real and greater than one in modulus, and the other 

real and lower than one in modulus, then the phase space has one attractive 
direction, and one repulsive, along two lines (the two eigenvectors).  

 
There exist algebraic tests to study the location of the eigenvalues, and conclude 
concerning the stability. In dimension two, they are simple:  
 
Proposition 2 The second order matrix A  is asymptotically stable if  
 ( ) 1 ( ) ( ) 1trace A determinant A determinant A| |< + , <  
 
1.5. Basic Study of the Non-homogeneous Constant Linear System 
 
The basic equation is:  
 

( 1) ( )x k Ax k b+ = +  
 
where the vector b  is constant also. In fact, the study of this system amounts to the 
study of a translated linear homogeneous system.  
 
Proposition 3 Consider the unique equilibrium x∗  such that  
 
x Ax b∗ ∗= +  
 
then the new variable y x x∗= −  is solution of the system:  
 

( 1) ( )y k Ay k+ = . 
 
This system is studied as above.  
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