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Summary 
 
To understand and predict the behavior of an environmental system one can use 
measurements or develop physically based models. In many applications however 
neither of these approaches is able to provide an accurate description of the dynamic 
behavior of the system. A model is always a simplification of the real world while 
measurements seldom produce a complete picture of the system behavior. Using data 
assimilation techniques measurements and model results are both used to obtain an 
optimal estimate of the state of the system. In this chapter we present an overview of 
methods available to assimilate data into a numerical model. Attention is concentrated 
on variational methods and on Kalman filtering. The main problem of using these 
advanced data assimilation schemes is the huge computational burden that is required 
for solving real life problems. For variational methods the adjoint model 
implementation is essential to obtain an efficient data assimilation algorithm. For 
Kalman filtering problems a number of approximate algorithms have been introduced 
recently: Ensemble Kalman filters and Reduced Rank filters. These algorithms make the 
application of Kalman filtering to large-scale data assimilation problems feasible. After 
a brief introduction to the most important data assimilation approaches we will discuss 
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the advantages and disadvantages of the various methods.  
 
1. Introduction 
 
Measurements can be used to develop statistical models for predicting the behavior of 
environmental processes. However these types of models are derived from the data and 
do not include physical knowledge of the process. Furthermore, measurements alone do 
generally not provide a complete picture of the process. Especially in case of processes 
that vary in space and time it is very hard to reconstruct the spatial and temporal 
patterns only from data. Physically based models, deterministic or stochastic, produce 
results that are spatially and temporally consistent. However these models are usually 
not able to accurately reproduce the measurements that are available. The information 
provided by the models and by the measurement information is often complementary. 
Therefore it is important to study a methodology for integrating measurements and 
physically based mathematical models. This methodology is called data assimilation. By 
using models that are based on physical laws and that are continuously adapted by the 
measurements available the two sources of information of the process, model 
information and measurement information can be integrated.  
 
Data assimilation can be defined as a procedure to incorporate data into a model 
simulation so as to improve the predictions. However, assimilating data into a numerical 
model is far from trivial. The simplest data assimilation procedure is to overwrite the 
model values at the measurement locations with the observed data. Inserting the data in 
this way into a numerical model is in general not a satisfactory method. It leaves the 
model dynamically unbalanced and introduced spurious waves into the model. These 
short waves may even cause instabilities of the underlying numerical model.  
 
The most common data assimilation technique used in numerical weather prediction is 
optimal interpolation. Here some estimates of the error statistics of the numerical model 
are used to correct the results of the model using the measurements. However, since 
these error statistics have to be determined by adopting some ad-hoc statistical 
assumptions, the correction produced by optimal interpolation is again not consistent 
with the underlying numerical model. As a consequence the use of optimal interpolation 
still often yields unrealistic correction or instabilities. 
 
More accurate data assimilation methods are variational data assimilation and Kalman 
filtering. The basic idea of these data assimilation methods is to use the data to only 
correct the weak points in the model.  Weak parts of the model may be due to 
uncertainty in initial and boundary conditions or imperfectly known model parameters.  
The data is not allowed to modify the accurate parts of the model. Therefore a two-step 
procedure is introduced: 
 
Step 1: Specify the uncertainties in the model 
 
Step 2: Use the data to estimate the uncertainties as accurate as possible 
 
As a result these types of data assimilation problems are in fact, inverse problems. The 
specified inputs (model uncertainties) have to be reconstructed from the output 
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(measurements). A variational approach or Kalman filtering solves these inverse 
problems accurately. For linear problems it can be shown that both approaches produce 
exactly the same results for the same problem formulation. Optimal interpolation does 
not solve an inverse problem. It produces corrections for the model output without 
reconstructing model uncertainties. As a result the variational method and Kalman 
filtering are superior to optimal interpolation. In fact, optimal interpolation can be 
considered as a simplified Kalman filter.  
 
In the last decennium the variational approach and Kalman filtering have gained 
acceptance as powerful frameworks for data assimilation. However, both methods 
require a very large computational burden, at least an order of magnitude larger then the 
computational effort required for the underlying numerical model. This is the main 
disadvantage of these methods compared to optimal interpolation that requires only a 
small increase in computer time. 
 
Starting point for the data assimilation methodology is a state space representation of 
the model and the measurements. Let us assume that modeling techniques have 
provided us with a deterministic state space representation of the form: 
 

1 0 0( , ) ( ) ,k k kX f X k B k u X x+ = + =  (1) 
 
Here the Xk is the system state, uk is the input of the system, f is a nonlinear function, 
and B(k) is an input matrix. For a numerical model that describes the behavior of an 
environmental process in space and time, the state consists of all the variables in all the 
grid points of the model at a certain time, while the function f in this case represents one 
time step of the numerical scheme of the model.  
 
The measurements taken from the actual system are assumed to be available according 
to the relation: 
 

( , )k kZ m X k=  (2) 
 
where Zk is a vector containing the measurements and m is a nonlinear function that 
specifies the relation between the model results and the measurements.  
 
In this chapter we describe in Section 2 the basic idea of the variational approach and 
discuss a number of extensions. In Section 3 we introduce the Kalman filter as data 
assimilation framework. Here we present a number of filter algorithms for solving 
large-scale data assimilation problems.  
 
2. Variational Data Assimilation 
 
2.1. Data Assimilation Formulated as a Minimization Problem 
 
If it can be assumed that the only uncertainties of the model (1)-(2) are introduced by a 
number of poorly known parameters, the data assimilation problem can be formulated 
as a deterministic parameter estimation problem.  Rewrite the model according to: 
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1 0 0( , , ) ( , ) ,k p k kX f X p k B k p u X x+ = + =  (3) 
 

( , )k kZ m X k=  (4) 
 
where p is the vector containing the uncertain parameters. Uncertain parameters may be 
model parameters, initial conditions or inputs. 
 
In order to estimate the parameters we first define a criterion J(p) as a measure for the 
distance between the measurements and the model results: 

( ) ( )
T

1

1
( ) ( , ) ( ) ( , )

K

k k k k
k

J p Z m X k R k Z m X k−

=
= − −∑  (5) 

 
Here the generalized least squares criterion or l2-norm has been chosen to define J. The 
covariance matrix R(k) is a weighting matrix that takes into account the errors 
associated with the measurements. This formulation is used very often in practice. The 
optimal parameter p is found by minimizing the criterion J(p).  
 
Prior information about the parameter values p0 can be included by adding a 
regularization term to the criterion: 
 

( ) ( )( )
( ) ( )

T 1

1
T 1

0 0 0

( ) ( , ) ( ) ( , )
K

k k k k
k

J p Z m X k R k Z m X k

p p P p p

−

=

−

= − −

+ − −

∑
 (6) 

 
Here P0  is the covariance matrix of the prior information p0, modeling the uncertainty 
associated with this prior information. Usually p0 is the first guess of the uncertain 
parameters and the starting value for the optimization procedure. The regularization 
term in the criterion prevents that parameter estimates become unrealistic if the 
measurement information is limited. In this case the estimates will simply remain close 
to the first guess (as they should be).  
 
- 
- 
- 
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