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Summary 
 
Mathematical modeling plays an important role whenever flow investigations are 
performed. In this paper special emphasis was given to models which are used in 
turbulent flow simulations and the effect of numerical discretization. The numerical 
scheme is of great importance when direct numerical simulations, i.e. the solution of the 
Navier-Stokes equations without any additional turbulence model, are performed. 
Applying DNS only flows with low to moderate Reynolds numbers can be studied, 
because the physics demand for very fine grids in order to resolve even the smallest 
turbulent scales. Numerical schemes which content artificial dissipation damp the 
evolution of the turbulent structures and cannot be used in DNS. For the example of the 
turbulent flow through a straight pipe, the possibilities and the accuracy of DNS were 
discussed. 
 
On the other hand solving the statistically averaged Navier-Stokes equations (RANS) is 
the state of the art in applied flow research. In order to be able to solve these RANS 
equations, turbulence models have to be used. They are based on weak physical 
assumptions and lead to an incomplete description of the turbulent flow. The results of 
RANS simulations of turbulent flow in a channel were compared to DNS data. It was 
further shown that the most popular turbulence models behave physical in non-isotropic 
wall-bounded flows. Last but not least, the most promising technique for future applied 
flow research, the large eddy simulation was presented. Different approaches which are 
used to model the unresolved turbulent fluctuations were discussed. Results of LES with 
different subgrid scale were compared to measurements. This comparison revealed the 
reliability of LES for turbulent flows with higher Reynolds numbers. 
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1. Introduction 
 
Hydrodynamics plays an important role in many environmental and industrial 
processes. Even in our daily life we experience the transport of water and the associated 
dynamics in many situations. In order to better understand the physical mechanisms and 
to take advantage of this knowledge in controlling hydrodynamics a huge number of 
experimental and theoretical studies were performed in the past. Due to several reasons, 
which will be discussed below, the end of this search is and probably will not be in sight 
for some years to come. 
 
During the 20th century many experimental facilities have been built and various 
measurement techniques were developed to visualize and quantify flows in different 
configurations. The existing experimental equipment is still intensively used in detailed 
flow measurements with fundamental and applied objectives. In any measurement 
technique electrical or optical signals are transformed using mathematical models to 
obtain the desired flow field. They usually describe simplified physical laws. The 
reliability of these models often determines the accuracy of the conducted flow 
measurements. Further, in the 1980s and 1990s research in fluid mechanics focused 
more and more on the improvement techniques for numerical flow predictions. One 
expects to cut costs and at the same time increase the available information. Obviously 
mathematical models play an even more important role in computational fluid dynamics 
(CFD). The governing equations for most flow problems are usually not solvable by 
analytical means. In order to obtain a numerical solution they have to be discretized on 
grids, which intersperse a defined computational domain. A certain discretization 
method principally already represents a mathematical model, since the associated 
numerical discretization or truncation errors can in certain cases dramatically alter the 
generated solution. Some discretization schemes for example hide numerical 
dissipation, which damps turbulent fluctuations. In this respect these dissipative 
schemes act like a turbulence model, but they do not include any physical meaning. 
 
Phenomenologically most flows can be categorized into the laminar and the turbulent 
flow regimes. Any disturbance, which is damped by molecular dissipation in a laminar 
flow, grows to form a turbulent, chaotic-like, time-dependent, three-dimensional flow 
field, if the relative impact of the molecular diffusion, which is expressed with the 
inverse of the Reynolds number Re luρ μ=  ( μ  and ρ  represent the dynamic viscosity 
and density of the fluid and l  and u  representing length and velocity scales of the flow)  
is reduced. For high Reynolds numbers the flow usually develops into a turbulent flow, 
which is characterized by fluctuations on a wide range of scales. In order to properly 
resolve all scales in a so-called direct numerical simulation (DNS) one has to specify 
extremely fine grids. Additionally, the size of the smallest scales decreases with 
increasing Reynolds number resulting in unaffordable computing times which scale 
with the third power of the Reynolds number. This makes DNS for high Reynolds 
numbers flows impossible. To overcome this, researchers developed turbulence models, 
which approximate the effect of smaller scales. This is necessary since most 
environmental or technically relevant turbulent flows are characterized by very high 
Reynolds numbers. Hence, turbulence modeling is one of the key problems in numerical 
hydrodynamics. 
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2. Some Fundamentals 
 
The reliability of numerical predictions in hydrodynamics is determined by three 
components, the mathematical model, the numerical method and the available 
computer. Unless the Mach number, which is defined as the ratio of a characteristic 
velocity of the flow to the speed of sound, is exceptionally high, it is generally accepted 
that the Navier-Stokes equations (1) describe most hydrodynamic flows. They are 
derived applying the principles of conservation of mass and momentum for a continuum 
fluid. The continuum assumption holds as long as the size of the smallest flow 
structures (eddies) is considerably larger than the mean free distance of the fluid 
molecules. 
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Eq.(1) represents a system of four time-dependent non-linear partial differential 
equations for the velocity vector u , the pressure p  and density ρ . In Cartesian 
coordinates ),,( zyx  the corresponding velocity vector is ),,( wvuu =  and the nabla 
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∂
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∂=∇ . To obtain full closure for Eq. (1) additional equations 

like the energy equation and the equation of state have to be solved. 
 
For simplicity we consider a Newtonian, incompressible fluid with constant density ρ  
and constant dynamic viscosity μ  for which the viscous stress tensor τ  is directly 
proportional to the strain rate tensor as expressed in Eq. (2). 
 

T( ( ) )u uτ μ= ∇ + ∇  (2) 
 
If we additionally introduce representative velocity and length scales refu  and refl  to non-
dimensionalize Eq. (1) and Eq. (2), one obtains the dimensionless incompressible 
Navier-Stokes equations (3), which contain the dimensionless Reynolds number Re. 
 

( ) 2

ref ref

1

0,

0

Re

u
u uu p u
t u l

ν
∇ =
∂

+ ∇ + ∇ − ∇ =
∂

 (3) 

 
Depending on the value of the Reynolds number Re in Eq. (3) solutions are obtained 
either in the laminar or in the turbulent flow regime. Laminar flows are characterized by 
their smooth and regular nature. Most known analytical solutions of Eq. (3) are valid 
only in the laminar regime, i.e. for low Reynolds numbers. For higher Reynolds 
numbers disturbances, which are introduced for example by imperfect or rough walls, 
tend to grow into three-dimensional vortical structures. Due to stretching and tilting of 
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the associated vortex lines an initially simple flow pattern changes into complicated 
turbulence, which is characterized by irregularity in space and time, increased 
dissipation, mixing and non-linearity. 
 
Often, one is not interested in all details of the behavior of the time-dependent three 
dimensional velocity and pressure field, but in their mean behavior. To obtain the mean 
flow field any turbulent variable f  is split into a statistical mean >< f  and its 
fluctuation ''f  as expressed in Eq. (4). 
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Often only simple statistics like the mean value and rms-value ''2

rmsf f=  are required 
for engineering or geophysical purposes. In practice the statistical mean values are 
either calculated by averaging with respect to time t  (see Eq. (4)), or by averaging in 
one or more spatial directions, if the turbulent flow field can be considered to be 
homogeneous in those directions. Typical examples are the fully developed turbulent 
flow in a straight pipe or the fully developed turbulent channel flow, which is the flow 
between two horizontally extended plates driven by a horizontal pressure gradient. For 
both flows periodic boundary conditions in axial and azimuthal or spanwise directions 
can be applied, since the flow can be considered to be homogeneous in these two 
directions. 
 
Statistically averaging Eq. (3) leads to the so-called Reynolds-averaged Navier-Stokes 
(RANS) equations. In Eq. (5) they are presented in Cartesian coordinates using 
Einstein's summation convention. 
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Compared to Eq. (3), Eq. (5) contains an extra non-linear term, the so-called Reynolds 
stress tensor >< ''''

ji uu . 
 
The turbulent kinetic energy k , which is defined by the trace of the Reynolds stress 
tensor ><= ''''

2
1

ii uuk , is produced from the mean flow, which does the stretching (if a 
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mean strain rate is present). This energy is successively passed down from large scale 
vortex motions down to motions of smaller and smaller scales until it is finally 
dissipated into thermal energy. This process is known as the energy cascade. It serves as 
a basis for many mathematical models which are used in turbulent flow predictions. 
Considering isotropic turbulence for example with  >>=<>=<< 2''

3
2''

2
2''

1 uuu  and 
assuming a universal equilibrium, Kolmogorov derived the one-dimensional energy 
spectrum Eq. (6) 
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which states that the energy of the vortical structures (eddies) in isotropic turbulence is 
proportional to the 35−  power of their wave-number k  if viscous effects, expressed 
by the dissipation rate ε , are significant. The typical length scale of the dissipating, i.e. 

the smallest, eddies is the so-called Kolmogorov scale 4
13 )( εν=K . A simplified 

sketch of a Kolmogorov spectrum in a double logarithmic plot over the wave number k  
is presented in Fig. 1. 
 

 
 

Figure 1: Simplified sketch of a Kolmogorov spectrum 
 
Principally, there are three different approaches to predict turbulent flows numerically. 
Due to the dramatically increased efficiency of the super computers and new numerical 
methods it is possible to solve the time-dependent Navier-Stokes equations without any 
turbulence model in a Direct Numerical Simulation (DNS). However, the huge 
computational resources, which are required to conduct a DNS restricts their application 
to turbulent flows at lower Reynolds numbers with  in most cases just an academic 
objective. The obtained turbulent flows though are characterized by random three-
dimensional fluctuations with a continuous spectrum of length scales ranging down to 
flow structures which dissipate the excessive energy, the Kolmogorov scales. This will 
be demonstrated in Section 3 presenting results produced in DNS of the fully developed 
flow in a straight pipe. 
 
Turbulent flow calculation with a more applied objective were and are still performed 
solving the Reynolds averaged Navier-Stokes equations (Eq. (5)). In many cases the 
obtained solution is stationary and, depending on the number of homogeneous 
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directions involved, one or two dimensional. The statistical approach is associated with 
the highest loss of information and with a closure problem which is not satisfactorily 
solved. Spectral information is completely lost, since any statistical quantity is an 
average over all turbulent scales. The obtained flow field describes the mean flow, 
which is enough for many applied problems, while the turbulent information is 
described with the Reynolds stress tensor. This tensor has to be modeled with empirical 
or semi-empirical models. There are a huge number of different turbulence models, 
because so far there is no generally valid statistical turbulence model. In Section 4 the 
popular ),( ωk -turbulence model will be discussed based on results which were 
obtained in simulations of the fully developed turbulent channel flow. 
 
In the 1990s the interest in time-dependent, three-dimensional analysis of turbulent 
flows increased, since many technical problems are associated with large scale motions. 
To obtain these time-dependent flow structures researchers more and more conducted 
unsteady RANS simulation on three dimensional meshes with increasing number of grid 
points. Doing this they pushed the RANS technique more and more towards the third 
approach in numerical turbulence simulation, the Large-Eddy Simulation (LES). This 
method basically resembles a compromise between RANS and DNS since it allows 
predicting the dynamics of the large turbulent scales while the effect of the fine scales 
are modeled with a subgrid-scale model. The most common subgrid scale models are 
discussed in Section 5 presenting LES results of the turbulent pipe flow. 
 
- 

- 
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