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Summary 
 
Models come to assist us in anticipating the consequences of policy implementation, 
and thereby help us make optimal choices with minimal damage. It is important to make 
"the whole" the object of our analysis and take complexity into account. For this 
purpose various mathematical methodologies have been developed. They mostly deal 
with more than one variable, since Health Systems are made of a few components, one 
of which might be the intervener as well.  
 
The possible methods include systems of difference equations, differential equations, 
cellular automata for understanding and monitoring spatial dynamics, loop analysis as a 
central method for systems in equilibrium, game theory and Markov processes. A whole 
spectrum of public health problems can be approached with mathematical models and 
their analysis, as presented through examples on infectious diseases, regulation of toxic 
pollutants, and the process of public use of health services. 
 
1. Introduction 
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Models are constructed to assist us in making decisions. Therefore the first question is: 
who are the “we” who are making models, why, and for whom, and what sort of 
decisions? Most policy modeling is done on behalf of governments, their subdivisions, 
or private organizations such as corporations. The modelers may themselves be 
employees or consultants of the policy making entity. Often the first question to ask is, 
is the modeling problem ethically acceptable? That is, is it ethical to accept the 
objectives of the policy or the side conditions constraining the domain of possible 
solutions? It is not within the scope of this chapter to propose any specific answer to this 
question, but only to suggest some criteria. Nor will it address issues of cost; the 
considerations are purely those related to benefit health of populations. 
 
In its simplest terms, “policy” means the allocation of resources or the imposition of 
some regulations or constraints to achieve a desired end. It is sometimes so 
straightforward that the problem itself determines the action to take, and the analysis of 
“policy” is not needed. Most daily actions are of this sort. If a baby needs changing, we 
change without any complicated analysis. But with even a little bit of complexity in a 
problem, decision making is not that obvious. Mathematical models and their analyses 
come to assist us in clarifying the consequences of policies when many factors are 
involved; they link various variables involved into a system that lends itself to 
qualitative and quantitative analysis.  
 
2. Posing the Question and Design of the Answer 
 
A question must be posed wide enough to accommodate an answer that makes the eco-
social system as the object of study based on the inseparability of social, biological and 
physical phenomena in determining health and disease. 
 
In contrast to the reductionist approach, this chapter suggests that it is important to 
analyze “the whole”.  Reduction assumes that to understand the whole it is sufficient to 
describe as completely as possible the smallest parts and their direct connections. This 
has its advantages as it has been a highly successful tactic in the small, where the 
detailed knowledge of the parts really is sufficient, such as in the identification of 
molecules has having certain specific effects;  but failure to see its limitations has led to 
disasters when the leap is made from physiological facts (e.g. pesticides kill bugs in 
bottles) to ecological or social claims (therefore application of pesticides will control the 
bugs in the field or the pesticide-seed-fertilizer-mechanization package will improve the 
lives of third world farmers and protect national economies). 
 
“In the early 1950’s, the Dayak people of Borneo suffered a malarial outbreak.  The 
World Health Organisation (WHO) had a solution: to spray large amounts of DDT to 
kill the mosquitoes that carried the malaria.  The mosquitoes died; the malaria declined; 
so far so good.  But there were unexpected side effects.  Amongst the first was that the 
roofs of the people’s houses began to fall down on their heads.  It seemed that the DDT 
had also killed a parasitic wasp which had previously controlled thatch-eating 
caterpillars.  Worse, the DDT-poisoned insects were eaten by geckoes, which were 
eaten by cats.  The cats started to die, the rats flourished, and the people were threatened 
by outbreaks of typhus and plague.  To cope with these problems, which it had itself 
created, the WHO was obliged to parachute 14 000 live cats into Borneo. Operation Cat 
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Drop, now almost forgotten at the WHO, is a graphic illustration of the 
interconnectedness of life, and of the fact that the root of problems often stems from 
their purported solutions.  (Quoted in Rachel Wynberg and Christine Jardine, 
Biotechnology and Biodiversity: Key Policy Issues for South Africa, 2000)” 
Indeed, failures to take complexity into account (too narrow a time horizon or 
disciplinary scope) in large scale interventions, may lead to devastating results. Many of 
the disasters of applied science and technology have been of this sort: pesticides create 
new pests, antibiotics stimulate the evolution of new pathogens, and hospitals become 
the foci of infection, straightening rivers increases flood damage, economic growth 
exacerbates inequality and dependence.  ((Levins 1995(a) and Levins 1995(b), (Levins 
1998), Awerbuch, Kiszewsky and Levins 2002). Indeed an interdisciplinary approach 
drawn from the fields of evolution, biogeography, ecology, climatology, behavioral and 
social sciences is needed (Awerbuch 1994, Awerbuch et al. 1996, McMichael 1997, 
Levins 1995 (a) and (b), Martens and Rotmans 2000). And if the results are not 
devastating at times, they may be risky in terms of human health and economically 
costly, as in the case of attempting to control the spread of Lyme disease in northern 
Massachusetts (USA) by destroying the deer, the main host of the tick that transmits the 
disease agent. The program was carried out over a period of a few years during the 
nineteen-eighties. While the major deer population was destroyed the disease kept 
growing within the local human population. A mathematical model could have assisted 
policy makers in predicting that destroying deer and leaving enough of them, above the 
threshold needed to support the tick population, would not control the disease 
(Awerbuch and Spielman 1994) 
 
Mathematical models come to assist us in the analysis of complexity by enabling us to 
link variables from different disciplines and explore their joint dynamics in the short 
and long run. An example is the system of difference equations used to explore the 
dynamical relationship between community consciousness and the habitats of 
mosquitoes that transmit dengue fever. 
 
The breeding sites of urban mosquitoes are formed when people pollute the 
environment with vases, old tires, cans and other containers which are filled during the 
rainy season with water, where mosquitoes can lay their eggs. Breeding sites are often 
removed by public action, which requires not only awareness but also organization. 
Individual behavior determines the birth rate of breeding sites while collective action 
predominates in the removal or death rate. This can be expressed as a mathematical 
model in the form of a system of difference equations: 
 

- -
1    n npX qX

n nH a H e b e+ = +  (1a)   
 

1     n n nX c X d H+ = +  (1b)   
 
Where H  (for habitats) is the number of breeding sites which change from week to 
week; and X the level of consciousness which is created when there are many breeding 
sites observed but also erodes at a rate that is a sociological parameter, a measure of the 
“half-life” of discipline. a is the fraction of breeding sites that survive from one week to 
the next and b is the rate of creation of new ones. Both terms are low when awareness is 
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high. The parameters p, measure how sensitive the change in breeding sites is to 
community awareness (prompting campaigns to clean up the environment) and q to 
individual consciousness (prompting individuals  to not pollute the environment). 
 
Consciousness at time n, Xn, depends on c, the fraction of the consciousness that persists 
from one week to the next. It is inversely a measure of the erosion rate and in the 
absence of new breeding sites. The parameter d measures the sensitivity of 
consciousness to the presence of breeding sites. The pair of difference equations: (1a) 
and (1b) may be analyzed mathematically for properties such as stability and oscillation. 
This will enable us to explore the dynamics of prevalence/consciousness systems as 
affected by the range of parameters and plan educational programs to minimize 
mosquito breeding sites. 
 
Our purpose here is to demonstrate the possibility of integrating sociological variables 
into vector epidemiology and explore their joint dynamics. 
 
Simulation studies show that with a low level of community organization (p=0.0001), 
individual awareness might erode in an oscillatory manner following the number of 
breeding sites; as shown in Figure 1, the system may show long term oscillations for 
some parameter values (H0=500, X0=100, a=0.5, b=300, c=0.1, d=0.6, q=0.1 
 

 
 

Figure 1:  Co-dynamics of mosquito habitats and consciousness (for parameter values: 
H0=500, X0=100, a=0.5, b=300, c=0.1, d=0.6, p=0.0001, q=0.1) 

 
The dynamics of prevalence/community-activity systems might however change 
dramatically if consciousness is built up over years of education in a political system 
that encourages community responsibility such as in the case of Cuba. 
 
In such a case the equations can be modified to include a constant g as follows: 
 

- -
1    n npX qX

n nH a H e b e+ = +  (1c)   
 

1       n n nX c X d H g+ = + +  (1d)   
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For a value of g=20 for example (which is 20%) of the initial value of X0) the system is 
stabilized at an equilibrium level of 19 breeding sites as presented in Figure 2: 
 

 
 

Figure 2: Co-dynamics of mosquito habitats and consciousness built up through the 
years (for parameter values: H0=500, X0=100, a=0.5, b=300, c=0.1, d=0.6, p=0.0001, 

q=0.1, g=20) 
 
If community consciousness is sensitive as well, at  p=0.1 and q=0.1,  based on Eqs. 
(1a) and (1b), an equilibrium level of both consciousness and breeding sites is possible 
to achieve.  

 
 

Figure 3: Co-dynamics of mosquito habitats and consciousness (for parameter values: 
H0=500, X0=100, a=0.5, b=300, c=0.1, d=0.6, p=0.0001, p=0.1, q=0.1) 

 
The addition of constant education such as when for example g=20, using Eqs. (1c) and 
(1d) the equilibrium for the number of breeding sites is lowered from about 150 to 125. 
The results of this analysis identify the persistence parameters as targets of intervention.  
 
When implementing an intervention it is important to assess the long term consequences 
that have an impact on various aspects of the human environment, as any change 
percolates through a complex network of physical, biological and social interactions that 
affect health; the change may feed-back and feed-forwards in a counterintuitive manner, 
and its effect can show up at points far removed from the original entry into the system; 
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in addition the results of the intervention we expect to see may be reversed. Sometimes 
the immediate effect of a change is different from the long term effect; sometimes the 
local changes may be different from the region-wide alterations. The same may have 
quite different effects in different places or times. It is important therefore, to develop 
new models or modify old ones to guide policies for particular situations in place and 
time. 
 
The study of the consequences of policy implementation is a study of the short- and 
long term dynamics of complex systems, a domain where our common sense intuitions 
are often unreliable and new intuitions have to be developed in order to make sense of 
often paradoxical results. Thus mathematics of complexity has to be studied as an object 
of interest in its own right (Levins 1973, Pattee 1973, Puccia and Levins 1985) and 
developed as a tool for policy makers.  
 
- 
- 
- 
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