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Summary  
 
The Laplace equation 0uΔ =  or 2 0u∇ =  is one of the basic classical equations of 
mathematical physics. Its solution is represented as the integral of the product of some 
function (potential density) and the fundamental solution of the Laplace equation. An 
integral of this kind is said to be a potential integral. In the 3D case the fundamental 
solution of the Laplace equation is the function 1 r  and in the 2D case- the function ln 
1 r , where r  is the distance between points. If we look for a solution of a boundary 
value problem in the form of a potential, then for potential density we obtain the 
Fredholm integral equation, where the integration is performed over the boundary of a 
given domain. The potential theory can be naturally extended to more complicated 
elliptic equations and other equations of mathematical physics. 
 
1. Introduction   
 
The notion of Newton’s potential was first introduced at the end of the 18th century by 
P.Laplace and J.Lagrange and then by L. Euler for problems of hydrodynamics. The 
notion of a potential being considered as a function whose gradient is a vector field is 
due to Gauss. The properties of the simple layer potential were first studied by Coulomb 
and Poisson, the great contribution to the development of the potential theory was made 
by Green. Nowadays the potential theory is an actively developed tool for studying and 
solving problems in different fields of mathematical physics. 

Let F = 
3

1
i i

i
F

=
=∑ e  be a given vector field, where ( , , )i iF F x y z=  are the component of the 

vector F applied at the point  ( ), ,x y z ,  ie  are the basic vectors of the orthogonal 
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coordinate system; let ( , , )u x y z  be a scalar function (scalar field). A scalar field 
( , , )u x y z  whose gradient equals F: grad  ( ), ,u u u x u y u z=∇ = ∂ ∂ ∂ ∂ ∂ ∂ = F , is called 

the potential of a vector field F. So knowledge of a potential function (potential) allows 
one to calculate acting forces. Many problems of electromagnetism, hydrodynamics, 
acoustics, heat conductivity and diffusion are reduced to boundary value problems for 
elliptic equations.  The simplest and important examples of such equations are the 
Laplace equation 0uΔ =  and the Poisson equation u fΔ = . Here Δ  is the Laplace 

operator 
3

2 2

1
i i

i
u u x

=
Δ = ∂ ∂∑ . The fundamental solutions of the Laplace equation being 

equal to 1(4 )rπ −  in the 3D case and to ( )1(2 ) ln 1 rπ −  in the 2D case play key role in 
the methods of the potential theory. On the basis of these solutions a potential is 
constructed as the integral of the product of some function (potential density) and a 
fundamental solution (or its derivative). Depending on an integration domain and on the 
use of a fundamental solution or its normal derivative, the volume potentials and the 
simple and double layer potentials are distinguished. If we look for a potential (a 
solution of the corresponding elliptic equation) in the form of the integral of density, 
then we obtain an integral equation for the unknown density. Since the solution can be 
expressed in terms of different potentials, the preferred choice of a potential is that 
which yields the simplest integral equation. Thus, to obtain the Fredholm equation of 
the second kind, the Dirichlet problem should be solved with the help of the double 
layer potential and the Neumann problem should be solved with the simple layer 
potential. Below we consider the potentials for the Laplace and Helmholtz equations 
and the wave and heat conductivity equations being the basic types of equations of 
mathematical physics that arise in energetics, ecology, the theory of electricity, 
atmosphere and ocean. 
 
2. Fundamentals of the Potential Theory 
 
2.1. Some Elements from Calculus  
 
2.1.1. Basic Orthogonal Coordinates 
 
Given a system of three single-valued functions of three variables: 
 

( )

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

( , , ),
( , , ),

, , .

x u u u
x u u u

x u u u

ϕ
ϕ

ϕ

⎫=
⎪⎪= ⎬
⎪= ⎪⎭

         (1) 

     
     Suppose that to each set of values 1 2 3, ,u u u  there corresponds a certain point M in 
the space with Cartesian coordinates 1 2 3, ,x x x . The quantities 1 2 3, ,u u u  can be 
considered as curvilinear coordinates of the point M. They define a coordinate system 
which is said to be curvilinear. A system is called orthogonal if at each point the 
coordinate lines passing through this point mutually intersect at right angles. Let us 
consider two basic examples of curvilinear orthogonal coordinates. 
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1  Cylindrical coordinates: 
 

[ ]cos , sin , ( 0, 2 , 0).x r u r z z rϕ ϕ ϕ π= = = ∈ >  
Here instead of 1 2 3, ,x x x  we have , ,x y z  and instead of 1 2 3, , , , .u u u r zϕ−  In the 2D 
case being independent of z cylindrical coordinates are called polar coordinates. 
2  Spherical coordinates  
 

[ ] [ ]sin cos , sin sin , cos ( 0, , 0, 2 , 0).x r y r z r rθ ϕ θ ϕ θ θ π ϕ π= = = ∈ ∈ >  
 
2.1.2. Basic Differential Operations on a Vector Field 

Let 1 2 3)( , ,u u uϕ ϕ=  be a scalar field, F = F 1 2 3( , , )u u u  be a vector field, F=
3

1
i i

i
F

=
∑ e . In 

the Cartesian rectangle coordinates the following operations are defined. 
 
Gradient: 
 

3

i
i=1

grad  = = e ;iϕ ϕ ϕ∇ ∂∑  

 
Divergence: 
 

( )
3

3
1

div ;i i
i

F F
=

∇ = ∂∑F = ,  

 
Rotor (vorticity): 
 

[ ]
1 2 3

1 2 3

1 2 3

rot ;,F
F F F

∇ = ∂ ∂ ∂
e e e

F =  

 
The Laplace operator (Laplacian) 
 

3
2

1
div grad ,i

i
ϕ ϕ ϕ

=
Δ = = ∂∑  

 
where the designations  2 2 2

2 3/ , / , ( , , )i i i i iu u∂ = ∂ ∂ ∂ = ∂ ∂ ∇ = ∂ ∂ ∂  are introduced for 
the sake of convenience. In cylindrical coordinates the Laplace operator has the form 

2 2

2 2 2
1 1r
r r r r z

υ υ υ
ϕ

∂ ∂ ∂ ∂⎛ ⎞Δ = + +⎜ ⎟∂ ∂⎝ ⎠ ∂ ∂
       (2) 

 
and in spherical coordinates  
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2
2

2 2 2 2 2
1 1 1sin .

sin sin
r

r rr r r
υ υ υυ θ

θθ θ ϕ
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Δ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ∂

    (3) 

  
2.1.3.   Formulae from the Field Theory  
 
Let u and υ  be two arbitrary functions with continuous partial derivatives up to the 
second order inclusive. Instead of ( , , ),u u x y z=  we write ( )u u A=  where a point A has 
coordinates ( , ,x y z ). The distance between a point ( , , )A x y z  and a point ( , , )P ξ η ζ  is 
defined by  
 

( ) ( ) ( )2 2 2 .APr x y zξ η ζ= − + − + −  
 
The symbols of differential operators on functions of A and P will be equipped with the 
sub-scripts A or P depending on whether the differentiation is performed with respect to 

, , or , , .x y z ξ η ζ  For, example, 
 

2 2 2

2 2 2 , gradA P
u u u u u uu u

x y z ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂

Δ = + + = + +
∂ ∂ ∂∂ ∂ ∂

i j k.  

 
The symbol ( )Pu n∂ ∂  denotes the derivative in the direction of the normal n to a 
surface at a point P: 

cos cos cos ,
P

u u u u
n

α β γ
ξ η ζ

∂ ∂ ∂ ∂⎛ ⎞ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 

 
where cos ,cos ,cosα β γ  are the direction cosines of the outer normal n. Recall the 
Ostrogradskii-Gauss formula 
 

( )cos cos cos ,
V S

P Q R dV P Q R dS
x y z

α β γ
⎛ ⎞∂ ∂ ∂

+ + = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∫∫∫ ∫∫  

 
where the cosines are the direction cosines of an outer normal n. Setting 

1 2 3, , ,P u Q u R uυ υ υ= ∂ = ∂ = ∂ we arrive at Green’s first formula 
 

( )grad ,grad .
V V S

u dV u dV u dS
n
υυ υ ∂

+ Δ =
∂∫∫∫ ∫∫∫ ∫∫      (4)  

 
Let us interchange u and v in the formula (4) and subtract the obtained equality from (4). 
This yields Green’s second formula: 
 

{ } .
V S

uu u dV u dS
n n
υυ υ υ∂ ∂⎧ ⎫Δ − Δ = −⎨ ⎬∂ ∂⎩ ⎭∫∫∫ ∫∫       (5) 
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If A ∈  V, then we can not substitute 1 APrυ =  at once into (5). Construct a small sphere 
with the centre at A. Applying Green’s second formula (5) to the functions andu υ  
outside the sphere and assuming that the radius of the sphere tends to zero, we obtain 
Green’s main integral formula 
 

( )11 ( )( ) ( ) .AP
P P

AP APS V

r u Pu A u P dS dV
r n n r

υ⎧ ⎫∂∂ Δ⎪ ⎪Ω ⋅ = − −⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
∫∫ ∫∫∫    (6) 

 
Depending on the location of the point A, the coefficient Ω  takes the values 

4 , , 2 , , 0, .A V A V A Vπ πΩ = ∈ Ω = ∈∂ Ω = ∉  Similarly, in the 2D case we denote some 
domain in the plane (x, y), bounded by a smooth closed curve L (or by several curves), 
by D. Then for arbitrary functions u and υ , which have continuous partial derivatives 
up to the second order inclusive, the following expressions take place:  
 

,
D D L

u u dS u dS u dl
n

υ υ υυ
ξ ξ η η

⎧ ⎫∂ ∂ ∂ ∂ ∂
+ + Δ =⎨ ⎬∂ ∂ ∂ ∂ ∂⎩ ⎭

∫∫ ∫∫ ∫      (7) 

 

{ } ,
D

uu u dS u dl
n n
υυ υ υ∂ ∂⎧ ⎫Δ − Δ = −⎨ ⎬∂ ∂⎩ ⎭∫∫ ∫       (8) 

 
( )( )ln 11 1 1 1( ) ln ( ) ln ,

2 2L D

ruu A u P dl u dS
r n n rπ π

⎧ ⎫∂∂⎪ ⎪= − − Δ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
∫ ∫∫    (9) 

 
where n∂ ∂  is the differentiation operator in the direction of outer normal to L, 

2 2 2 2 , APr rξ ηΔ = ∂ ∂ + ∂ ∂ =  is the distance between the point A and a variable point 
P. 
 
2.1.4. Basic Properties of Harmonic Functions 
 
Functions, satisfying the Laplace equation 0uΔ =  in a domain V, are called harmonic 
functions. For a harmonic function U the following properties hold. 
 

1 0,
S

U dS
n

∂
⋅ =

∂∫∫  

 
i.e., the integral of the normal derivative of a harmonic function over the boundary of a 
domain is equal to zero. 
2 ⋅  The value of a harmonic function at any interior point of a domain is expressed in 
terms of the values of this function and its normal derivative at the boundary of the 
domain by the formula 
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( )11 1( ) .
4 S

rUU A U dS
r n nπ

∂⎡ ⎤∂
= −⎢ ⎥∂ ∂⎣ ⎦

∫∫  

 
3 .  The value of a harmonic function at the centre A of a sphere RS  of radius R is equal 
to the arithmetic mean of the values of this function at the surface of the sphere, i.e., to 
the integral of the function over the surface of the sphere, divided by the area of this 
surface: 
 

2
1( ) .

4
RS

U A U dS
Rπ

= ∫∫  

 
4 ⋅  From 3  the maximum principle follows: a function, harmonic inside a domain and 
continuous up to its boundary, takes its maximum and minimum values at the boundary 
of the domain. 
 
2.2. Volume Mass or Charge potential 
 
2.2.1. Newton’s (Coulomb’s) potential 
 
Let V be some finite domain in 3R , bounded by a piecewise smooth closed surface S. 
Let ( )Pρ  be a continuous bounded function in V. Then 
 

( ) ( )

V

Pu A dV
r

ρ
= ∫∫∫          (10) 

 
is called the infinite mass potential or Newton’s mass potential distributed over volume 
V with density ρ . The function ( )u A  can also be considered as Coulomb’s potential of 
volume-distributed charges. 
 
2.2.2. Properties of Newton’s Potential 
 
At any point A outside V the function ( )u A  from (10) is continuous and differentiable 
with respect to , ,x y z  under the integral sign as much times as desired. In particular, 
 

( ) 3grad ( ) ( )grad 1 ( ) ,
V V

u A P r dV P dV
r

ρ ρ= = −∫∫∫ ∫∫∫
r     (11) 

 
where r is a radius-vector, r = 

( ) ( ) ( ) ( )( ) , , , , , , .AP x y z A A x y z P Pξ η ζ ξ η ζ= − + − + − = =r i j k   

Since ( )1 0, , ,APr A V P VΔ = ∉ ∉  we have 
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( )( ) ( ) 1 0, .AP
V

u A P r dV A VρΔ = Δ = ∉∫∫∫  

 
Thus, the potential ( )u A  of masses or charges distributed over volume V satisfies the 
Laplace equation at all points outside V. Away from the origin or, which is the same, 
from the domain V we have the approximate equality 
 

( ) ( )1 ,
V

Mu A P dV
r r

ρ≈ =∫∫∫         (12) 

 
where M= dVρ∫∫∫  is the total mass. In other words, at infinity the potential of volume 
distributed masses (or charges) behaves like the potential of a mass point (or of a point 
charge) located at the origin such that its mass or charge is equal to the total mass (or 
to the total charge) distributed over volume V. In particular, ( ) 0 .u A as r→ →∞   For 
partial derivatives of the potential of volume distributed masses we have the estimate 
 

2 2 2, , ,u C u C u C
x y zr r r
∂ ∂ ∂

< < <
∂ ∂ ∂

       (13) 

 
where C is some constant. 
 
2.2.3. Potential of a Homogenous Sphere 
  
Assume that a sphere V of radius R with the center at the origin has constant density 

constρ = . Passing to spherical coordinates 
, , where sin cos , sin , cosr r r rϕ θ ξ θ ϕ η ϕ ζ θ= = = , we obtain the potential of a 

homogenous sphere at a point r : 
 

2

, if ,

( )
3 , if .

2

M r R
r

u r
M r r R
R R

⎧ >⎪
⎪= ⎨ ⎧ ⎫⎪ ⎪⎛ ⎞⎪ − <⎨ ⎬⎜ ⎟⎪ ⎝ ⎠⎪ ⎪⎩ ⎭⎩

 

 
It is easy to see that ( )u r  and its first-order derivative ( )u r′  are continuous for all 

0r ≥ , but the second-order derivative ( )u r′′  becomes discontinuous at the point r R= . 
 
At all exterior points the potential of a homogenous sphere is equal to the potential of 
the mass point of the same mass, placed at its centre, and satisfies the Laplace equation. 
At all interior points of the sphere the potential satisfies the Poisson equation 

4 .u πρΔ = −  
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