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Summary  
 
When solving problems of mathematical physics, we often deal with the so-called 
eigenvalue problems which are represented by a homogeneous linear equation with a 
parameter. Nontrivial solutions of such an equation (eigenfunctions) play an important 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS – Vol. I - Eigenvalue Problems: Methods of Eigenfunctions - V.I. 
Agoshkov and V.P. Shutyaev 
 

©Encyclopedia of Life Support Systems (EOLSS) 

role when determining a solution of an original problem. In some cases special 
functions, being eigenfunctions of a specific eigenvalue problem, are used. The method 
of eigenfunctions is one of the most often used methods of mathematical physics. With 
this method, a solution is represented as the expansion in terms of eigenfunctions of an 
operator closely related to a problem to be solved. As a rule, this expansion involves 
orthonormal functions with special weights, namely, Fourier series. The method of 
eigenfunctions enables us to solve various problems of mathematical physics among 
which are problems of the theory of electromagnetism, heat conductivity problems, 
problems of the oscillation theory and acoustics. This method can also be used when 
solving problems of sustainable development.   
 
1. Introduction  

 
One of the most often used methods of mathematical physics is the method in which a 
solution is represented in the form of a series in some functions closely related to an 
original problem which are called eigenfunctions. Physically, in the simplest cases this 
approach corresponds to superposition of stationary waves.  
 
Some applications of the method of eigenfunctions date back to Euler. Ostrogradskii 
was the first to develop its general formulation. A rigorous justification of the method is 
due to Steklov.  
 
The method of eigenfunctions is closely related to the Fourier method, or the method of 
separation of variables, which is intended for finding a particular solution of a 
differential equation. When using these methods, we are often concerned with special 
functions being solutions of an eigenvalue problem. The method of separation of 
variables was proposed by d’Alembert (1749). In the 18th century it was used by Euler, 
Bernoulli, and Lagrange for solving the problem of oscillation of a string. Early in the 
19th century Fourier developed this method in considerable detail and applied it to the 
heat conductivity problem. The general formulation of this method is due to 
Ostrogradskii (1828).   
 
In this chapter the fundamentals of the method of expansion in terms of eigenfunctions 
are presented and the applications to concrete problems of mathematical physics, among 
which are problems of the theory of electromagnetism, heat conductivity problems, 
problems of the oscillation theory and acoustics, are considered.  
 
2. Eigenvalue Problems  
 
Eigenvalue problems often arise when solving problems of mathematical physics. As a 
rule, an eigenvalue problem is represented by a homogeneous equation with a 
parameter. The values of the parameter such that the equation has nontrivial solutions 
are called eigenvalues, and the corresponding solutions are called eigenfunctions.   
 
The simplest eigenvalue problems were considered by Euler. Great attention was paid to 
these problems in the 19th century when the classical theory of equations of 
mathematical physics had been established.  
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2.1. The Formulation of an Eigenvalue Problem and its Physical Meaning  
 
We consider a simple example which reduces to an eigenvalue problem. Assume that a 
homogeneous string of length l  with fixed ends is free of outside forces. Take either of 
the two ends of the string as the origin and assume that the x  axis is directed along the 
string. A function ( ),u x t;  which describes free small oscillations of the string, satisfies 
the homogeneous differential equation  
 

2 2
2

2 2 0u ua
t x

∂ ∂
− =

∂ ∂
        (1) 

 
and the homogeneous boundary conditions  
 

(0 ) 0 ( ) 0u t u l t; = ; ; = .  
 
The motion of the string is defined not only by the equation and boundary conditions 
but also by initial conditions.  
 
Consider the simplest motion of the string, namely, stationary waves. The motion such 
that the shapes of the string at different instants of time are similar to each other is 
called a stationary wave. A stationary wave is defined by a function of the form  
 

( ) ( ) ( )u x t X x T t; = ,  
 
where a function ( ),T t  which depends only on time ,t  is called the law of oscillation 
and describes the character of motion of individual points of the string, and a function 

( ),X x  which depends only on the x  coordinate, describes the shape of the string at 
various instants of time being the same within a factor of ( ).T t   
 
First, for a string with fixed ends it is obvious that a function ( )X x  must satisfy the 
conditions  
 

(0) 0 ( ) 0.X X l= ; =   
 
Besides, ( )X x  and ( )T t  must satisfy some equations which follow from the Eq. (1). To 
obtain these equations, we substitute ,u  expressed in terms of X  and ,T  into the Eq. 
(1) that results in   
 

2( ) ( ) ( ) ( ).X x T t a T t X x′′ ′′=   
 
Dividing both parts of this equation by 2 ( ) ( ),a X x T t  we obtain  
 

2
( ) ( )

( )( )
T t X x

X xa T t
′′ ′′

= .  
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Since the left-hand side of this equation depends only on t  and the right-hand side does 
not depend on ,t  both sides are equal to the same constant. We denote this constant by 

:λ−   
 

2
( ) ( )

( )( )
T t X x

X xa T t
λ

′′ ′′
= = − .  

 
Then we have  
 

2 0 0.T a T X Xλ λ′′ ′′+ = , + =   
 
Thus, we arrive at the simplest eigenvalue problem. It is easy to see that the constant λ  
can take only the values  
 

2 2 2 ( 1 2 3 ),n n l n …λ π= / = , , ,   
 
and for the string with fixed ends the shape of stationary waves is defined by  
 

( ) sin constn
nxX x c c
l

π
= , = .  

 
Now we find the functions ( )nT t  which correspond to the wave of the shape ( ).nX x  To 
this end we substitute the value of nλ  into the equation in :T  
 

2 2
2

2 0n n
a n TT

l
π

+ = .′′  

 
The general solution of this equation has the form  
 

( ) sin cos sinn n n n n
an an anT t B t C t A t
l l l

π π π ϕ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + = + ,  

 
where nB  and nC  or nA  and nϕ  are arbitrary constants.  
 
With the use of nX  and ,nT  we can write the final expression for all admissible 
stationary waves:  
 

( ) sin sinn n n
an nxu x t A t
l l

π πϕ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

; = + ,  

 
where n=1, 2, 3, ….  
 
Thus, the n-th stationary wave describes the motion of the string such that each point of 
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the string executes harmonic oscillations with frequency an
l

π  being the same for all 

points . The amplitudes of these oscillations vary from point to point and are equal to 
sinn

nxA l
π  ( nA  is arbitrary).  

 
Since free oscillations of the string are uniquely defined by its initial shape 0tu =|  and by 

initial velocities 0t
u
t =

∂ |∂  of its points, it is obvious that a stationary wave arises if and 

only if the initial deflection and the initial velocity have the form  
 

0 0sin sin constt t
nx u nxu D E D Etl l

π π
= =

∂= ; = , , = .∂  

 
This stationary wave is defined by the equation  
 

( ) sin cos sinl an an nxu x t E t D t
an l l l

π π π
π
⎛ ⎞; = + .⎜ ⎟
⎝ ⎠

 

 
The quantities nλ  are called eigenvalues and the functions ( )nX x  are called 
eigenfunctions.  
 
We introduce a general definition of eigenvalues and eigenfunctions. Let L  be a linear 
operator with a domain ( ).D L  We consider a homogeneous linear equation  
 
Lu uλ= ,          (2) 
 
where λ  is a complex parameter. This equation has the trivial solution for all .λ  For 
some λ  this equation may have nontrivial solutions ( ).D L  A complex value of λ  such 
that the Eq. (2) has nontrivial solutions which belong to ( )D L  is called an eigenvalue of 
the operator L , and the solutions themselves are called eigenfunctions corresponding to 
this eigenvalue. The total number (1 )r r≤ ≤ ∞  of linearly independent eigenfunctions, 
corresponding to an eigenvalue ,λ  is called the multiplicity of this eigenvalue; if 1,r =  
then λ  is called a simple eigenvalue.  
 
If the multiplicity r  of an eigenvalue λ  of an operator L  is finite and 1 2 ru u … u, , ,  are 
corresponding linearly independent eigenfunctions, then any linear combination  
 

0 1 1 2 2 r ru c u c u … c u= + + +  
 
is also an eigenfunction corresponding to this eigenvalue, and this formula gives the 
general solution of the Eq. (2). Hence if the equation  
Lu u fλ= +  
 
has a solution, then its general solution is defined by the formula  
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1

r

k k
k

u u c u∗

=
= + ,∑  

 
where u∗  is a particular solution and 1 2kc k … r, = , , , ,  are arbitrary constants.  
 
Eigenvalues and eigenfunctions often have clearly defined physical meaning: in the 
example considered above the eigenvalues nλ  define the frequency of harmonic 
oscillations of the string, and the eigenfunctions nX  define amplitudes of oscillations.  
 
2.2. Eigenvalue problems for differential operators  
 
We consider a more general case of a mixed problem for a homogeneous differential 
equation with homogeneous boundary conditions.  
 
Let Ω  be a bounded domain in a one-, two-, or three-dimensional space. We denote an 
arbitrary point of the domain Ω  by P  and a function of coordinates of this point by 

( ).u P  We consider a linear differential operator of the function u  of the form  
 

[ ] div gradL u p u qu≡ − ,  
 
where functions ( )p P  and ( )q P  are continuous inside Ω  and on its boundary .∂Ω  
Moreover, we assume that ( ) 0p P >  inside the domain Ω  and on the boundary.  
 
In the one-dimensional case Ω  is an interval ( )a b,  on the x  axis. In this case the 

operators ‘grad’ and ‘div’ mean ,d
dx  hence,  

 
2

2[ ] ( ) ( ) ( ) ( ) ( )d du d u duL u p x q x u p x p x q x u
dx dx dxdx

⎡ ⎤ ′= − ≡ + − .⎢ ⎥⎣ ⎦
 

 
On the boundary ∂Ω  of the domain Ω  we consider homogeneous boundary conditions 
of the form  
 

[ ] 0,uΛ =   
 
where  
 

[ ] uu p u
n

γ∂
Λ ≡ − ,

∂
 

 
or  
 

[ ]u uΛ ≡ .  
 
In the former case we deal with so-called boundary conditions of the third kind  (or, if 
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0,γ =  of the second kind), in the latter case we have boundary conditions of the first 
kind. Here γ  is a continuous nonnegative function defined on ,∂Ω  and n  is the 
direction of an inner normal to .∂Ω  
 
In the one-dimensional case the boundary of a domain consists of two endpoints a  and 
b  of a segment and by the derivative n

∂
∂  is meant d

dx  at the point a  and d
dx−  at the 

point .b  Then to define the function γ  it is sufficient to specify two nonnegative 
numbers aγ  and ,bγ  and the operator [ ]uΛ  is defined by  
 

( ) ( )[ ] ( ) ( ) [ ] ( ) ( )a a b b
du a du bu p a u a u p b u b

dx dx
γ γΛ = − , Λ = − − .  

 
Sometimes boundary conditions of other kind, namely, periodic conditions, are 
considered. For example, in the one-dimensional case these conditions are defined by 
the equalities ( )u a =  ( ) ( ) ( ) ( ) ( ).u b p a u a p b u b′ ′, =  These boundary conditions are 
homogeneous as well, but a feature of these conditions is that both points a  and b  enter 
into each equality.  
Consider the following problem  
 

[ ] 0 inL u uλρ+ = Ω,         (3) 
 

[ ] 0 onuΛ = ∂Ω,         (4) 
 
where ( )Pρ ρ=  is a nonnegative continuous function defined in the domain Ω . This 
function is called a weight function of the problem or a weight. As in the case of a 
string, for all values of λ  there exist solutions u  satisfying the boundary conditions.  
The values of the parameter ,λ  such that the Eq. (3) has nontrivial solutions satisfying 
the boundary conditions (4), are eigenvalues, and the corresponding solutions u  are 
eigenfunctions of the operator .L   If a number of eigenfunctions is so "large" that any 
function defined in the domain Ω  (satisfying some natural smoothness requirement) 
can be expanded into a series in terms of these eigenfunctions, then we can seek a 
solution of a nonhomogeneous problem as a series in terms of corresponding 
eigenfunctions.  
 
In the following subsection we consider some well-known properties of the eigenvalue 
problem (3)–(4).  
 
- 
- 
- 
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