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Summary 
 
For many problems of calculus we can not obtain an exact solution in terms of 
elementary functions. Because of this, we have to use numerical methods. 
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Mathematicians have developed a great number of methods for various classes of 
problems. On the basis of these methods packages of applied program have been created. 
The power of computers including personal ones is increasing fast. This enables a user 
who is not a highly skilled specialist to perform complicated calculations with the help of 
standard packages. 
 
However, there does not exist an absolutely reliable package. When solving a 
complicated problem, these packages may give an unpleasant surprise producing a wrong 
result. In order to evaluate the correctness of a result, it is necessary to know in which 
case an algorithm being used in a program can be applied. In this chapter the simplest and 
most reliable algorithms for solving typical problems of numerical analysis often met 
with are presented and accuracy and reliability of these algorithms are discussed. Special 
attention is given to the a posteriori asymptotic error estimate that allows one to perform 
calculations within a guaranteed limit of accuracy. 
 
1. Introduction 
 
1.1. Problems of Numerical Analysis 
 
It is rare for a mathematical problem to admit a solution which is expressed in terms of 
elementary or, in the last resort, well-studied special functions. For example, the roots of 
a polynomial of degree higher than four are not expressed in terms of radicals, the 
function sin(x2) can not be integrated exactly, and a simple differential equation 

2 2du dx u x= +  has no solution expressed in terms of elementary functions. This is 
especially true for applied problems. For example, assume that we need to integrate or to 
differentiate a function whose values are obtained by experimental measurements, i.e., a 
function defined on a grid (in the classical sense such a function has neither an integral 
nor a derivative). 
 
If an exact solution can not be obtained, then numerical methods are applied; calculations 
are usually performed with the help of a computer program. An “ideal” numerical method 
consists of three parts: 
 
• a basic algorithm reducing calculation to a sequence of operations that can be 

performed by a computer (logical and arithmetical operations as well as calculation of 
values of elementary and special functions included in  software); 

• the proof of convergence of a numerical solution to an exact one when passing to a 
limit (for example, as a mesh size tends to zero in grid methods or as a number of 
iteration steps tends to infinity in iteration methods); 

• the estimation of an error of concrete calculations or auxiliary algorithms that choose 
parameters of a basic algorithm in such a way as to perform calculation within a given 
accuracy. 

 
It seems that an ideal numerical method enables one to solve a problem successfully 
which is true in most cases. However, severe challenges may arise. Consider them in 
detail. 
 
1.1.1. Well-posed Problems 
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Any original mathematical problem is as follows: find unknown data u  from given data 
.w  Formally this can be written as  

 
( ),      ,      ;u A w u U w W= ∈ ∈  (1) 

 
where U, W are ranges of the data, an operator A defines an original problem. Let us 
formulate three conditions for an operator to be well-posed in the sense of Hadamard: 
 
• for any admissible w there exists a solution u of the problem (1); 
• in some finite neighborhood this solution is unique; 
• a solution continuously depends on given data, to this end variations in some norm 

must satisfy the inequality  
 

[ ] ,      0 [ ] ;u c w w c wδ δ≤ ⋅ ≤ < ∞  (2) 
 
where c depends on w (for linear problems c = const, i.e., c does not depend on w). 
 
When solving the problem (1) numerically, all three conditions must be fulfilled. In fact, 
a) it would make no sense to calculate a solution if it does not exist; b) since an algorithm 
is a uniquely determined sequence of operations, it can converge to a single solution and 
not to several ones; c) calculations are always performed with some errors that is 
equivalent to some small variations ;wδ  the violation of the third condition may result in 
large variations ,uδ  i.e., in this case convergence does not take place. 
 
Thus, we require for the problem (1) to be well-posed, and we have to test the validity of 
the corresponding conditions. 
 
Nevertheless, ill-posed problems exist and have important practical applications. To solve 
them, additional considerations are used. Besides, an operator A and sets U, W are 
rearranged in such a way that a problem becomes well-posed. 
 
We point out an important borderline case. Assume that (2) is fulfilled but c[w]>>1 (i.e., 
c[w] is many orders greater than 1). Then a problem is formally well-posed but in fact 
very small variations wδ  may lead to large variations .uδ  As a result, it becomes 
difficult to achieve a high accuracy. Such problems are said to be ill-conditioned. 
 
1.1.2. Rigor of Studies 
 
Algorithms do not always have an exhaustive mathematical justification. Usually in a 
proof some properties of an operator and sets are used (for example, W is assumed to be a 
set of functions that are continuous together with derivatives up to order p) or a numerical 
solution is assumed to belong to some neighborhood of an exact one. For concrete 
calculation these assumptions may be not satisfied. Then we have one of the following 
alternatives: 
 
• a basic algorithm fails because of an invalid operation (division by zero, calculation 

of square root or logarithm of a negative number etc.); 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS – Vol. I - Numerical Analysis and Methods for Ordinary Differential 
Equations - N.N. Kalitkin, S.S. Filippov 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

• a basic algorithm works but a numerical solution does not converge to any limit; 
• a numerical solution converges to an exact one but the rate of convergence is less than 

might be expected from theoretical results, moreover, auxiliary algorithms work 
improperly; 

• a numerical solution converges to a limit being something other than an exact solution 
(this case may take place only for special problems with so-called generalized 
solutions). 

 
Besides, most of the convergent results are valid only when all operations are performed 
exactly. In fact, calculations are performed with a restricted number of digits (~15 
decimal digits for a 64-bit computer), moreover, the number of valid digits of input data 
is rather small. In addition, in a number of computer programs along with “pure” 
algorithms some special tricks are used (for example, a small constant is added to a 
denominator to avoid division by zero). As a rule, such tricks improve reliability of an 
algorithm but make its theoretical investigation more complicated. 
 
It is risky to ignore these details as has been illustrated with the following example. It is 
known that Taylor expansion of the function sin x  is absolutely convergent for any x. For 
x > 0 the series is alternating, thus, the error of a sum of a finite number of terms does not 
exceed the first truncated term. The summation of the series was performed for 2550x =  
(without reduction to the first quadrant) with the use of a 64-bit computer. Calculation 
was terminated when the last term became equal to 810 .−  The computer output was an 
absurd result: sin 2550 29.5!=  A close examination shows that this is due to round-off 
errors and for the given accuracy with this algorithm calculation must be performed with 
twice as many digits. 
 
All the above is not a cause for despondency. This only reminds that serious numerical 
calculation requires as much attention as driving in a street with heavy traffic. One should 
not absolutely rely upon any method or any program. It is necessary to know their 
possibilities as well as weak points and evaluate reasonableness of obtained results. This 
is an art rather than a science; one can train in it on the basis of experience in practical 
calculation. 
 
1.2. Sources of Error 
 
1.2.1. Types of Data and Unknowns and Their Norms 
 
Given data as well as a solution may be of various types: numbers u, w; vectors 

{ }, 1 ,pu p P= ≤ ≤u { }, 1qw q Q= ≤ ≤w  of different dimension; matrices; functions 
( ), ( )u x w y  of one variable or of many variables; vector-functions etc. In addition, an 

argument (arguments) of a function may be continuous  a x b≤ ≤  or discrete ,x∈Ω  
where { }, 1nx n NΩ = ≤ ≤  is a grid. 
 
We illustrate this with several examples. 
 
• An equation in one unknown is solved; u, w are real or complex numbers. 
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• A system of N linear or nonlinear equations relative to N unknowns is solved; u, w 
are vectors of the same dimension N. 

• A definite integral of ( )w x  is calculated; ( )w x  is a function of a continuous 
argument, u is a number. 

• Spline-approximation of a function given in a tabulated form on a grid Ω  is 
constructed; given data can be considered as a function ( )nw x  of a discrete argument 
or as a vector { };nw  a solution ( )u x  is a function of a continuous argument. 

• A differential equation ( , )du dx w u x=  is solved; given data represent a continuous 
function ( , )w u x  of two arguments; a solution is a continuous function ( )u x  of one 
argument. However, for numerical integration a grid { }nx  is introduced and a 
numerical solution appears to be a function ( )nu x  of a discrete argument. 

A norm of an error is a quantitative measure of accuracy. We present some popular 
norms. For a number u there exists the single norm  
 

.u u=  (3) 
 
For a bounded function u(x), x∈[a, b] we can use the Chebyshev norm  
 

[ , ]
max ( ) ,

C x a b
u u x

∈
=  (4) 

 
and for a square integrable function with a weight ( )xρ  – the Hilbert norm  
 

2

1/ 2

2 ( ) ( ) ,      ( ) 0.

b

L

a

u u x x dx xρ ρ
⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (5) 

 
For a function u(xn) of a discrete argument or for a vector {un} discrete analogues of the 
norms (4)–(5) are as follows:  
 

2

1/ 2

2

1

1

max ,      ,      0.
N

n n n nc ln N

n

u u u uρ ρ
≤ ≤

=

⎛ ⎞
⎜ ⎟= = >
⎜ ⎟
⎝ ⎠
∑  (6) 

 
For matrices several norms are used. 
 
We see that for one object various norms may be used. These norms are related in a 
certain way. For a function of a continuous argument we have single inequalities, for 
example,  
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2

1/ 2

( ) .

b

C L

a

u x dx uρ
⎡ ⎤
⎢ ⎥⋅ ≥⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (7) 

 
If a norm in the left-hand side is small, the norm in the right-hand side is small as well, 
but the opposite is not true; the similar statement is valid for convergence of methods in 
these norms. The first norm is said to be stronger than the second one. A clear distinction 
between the norms (4) and (5) is as follows: if the C-norm is small, then ( )u x  is small at 
all points of [a, b]; if the 2L -norm is small, then ( )u x  is small at almost all points except 
an insignificant part of [a, b] where ( )u x  is not necessarily small. 
 
For a function of a discrete (finite-dimensional) argument norms are related by double 
inequalities. For example, for (6) we have  
 

2

1/ 2

1

1

min .
N

n nc l c n N

n

u u uρ ρ
≤ ≤

=

⎛ ⎞
⎜ ⎟⋅ ≥ ≥ ⋅
⎜ ⎟
⎝ ⎠
∑  (8) 

 
Hence, convergence in one norm implies convergence in another one. Such norms are 
said to be equivalent. In a finite-dimensional space all norms are equivalent, but for an 
infinite-dimensional space this is not the case. 
 
Three sources of an error of a numerical solution are distinguished: an error of given 
data, an error of a method, and a round-off error. Consider them in detail. 
 

- 
- 
- 
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