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Summary  
 
This chapter presents a review of direct and iterative numerical methods for solving 
linear and nonlinear integral equations of the second kind.  
 
1. Introduction 
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An integral equation is an equation with an unknown function under the integral sign. In 
a general case an integral equation is of the form  
 

( )( ) ( )( ), , , , .
b

a

K x s u s ds f x u x a x b= ≤ ≤∫  (1.1) 

 
Here x is an independent variable, u(x) is an unknown function, K(x,s,u) is a kernel of 
the integral equation, f(x,u) is a right-hand side, s is a variable of integration. 
 
Many problems are reduced to integral equations (in mechanics, radio engineering, 
hydrodynamics, aerodynamics, electrodynamics, quantum mechanics, etc.). The integral 
formulation of motion equations in the form of conservation laws is also used when we 
construct conservative difference schemes for some problems (in particular, in 
mechanics of continuous media).  
 
When solving some problems, integral equations are better to handle than differential 
equations. For example, the Cauchy problem  
 

00 )(),,( uxuuxf
dx
du
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can be formulated in the form of the integral equation  
 

( ) ( )( )
0

0 , .
x

x

u x u f s u s ds= + ∫  (1.3) 

 
Thus, the setting of a problem is completely taken into account in the integral equation 
and there is no need to define additional conditions (initial and boundary).  
 
Eq. (1.1) is written in the case of one independent variable x. However, it is easy to 
write its multi-dimensional analogue for independent variables ( ).,...,, 21 nxxxx =  A 
multi-dimensional integral equation for some domain G in the n-dimensional space can 
be written as  
 

( )( ) ( )( ), , , ,
G

K x s u s ds f x u x x G= ∈∫  (1.4) 

 
or  
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Methods for solving the one-dimensional equation (1.1) are naturally extended to the 
case of the multi-dimensional integral equation (1.4) (one-dimensional integrals are 
replaced by multi-dimensional ones). By contrast, for differential equations the 
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approaches and methods, which are applied in the multi-dimensional case (partial 
differential equations), differ radically from those in the one-dimensional case (ordinary 
differential equations). 
 
From the above reasoning, further we shall restrict ourselves to the consideration of the 
one-dimensional equation (1.1).  
 
Now let us show some special cases of the equation (1.1) which frequently occur in 
applications and are most studied.  
The equation (1.1) is called a linear integral equation if an unknown function enters 
linearly into it. The Fredholm equation of the first kind  
 

( ) ( ) ( ), ,
b

a

K x s u s ds f x a x b= ≤ ≤∫  (1.5) 

is an example of such equations. 
 
 
The Fredholm equation of the second kind is of the form  

( ) ( ) ( ) ( ), , .
b

a

u x K x s u s ds f x a x bλ− = ≤ ≤∫  (1.6) 

 
In the Fredholm equations the kernel K(x,s) is defined and bounded on a square 

,, bsabxa ≤≤≤≤  i.e., ( ) CsxK ≤,  at all points of this square, where 0>C  is some 
constant, λ  is a number parameter, K(x,s) and the right-hand side f(x) are given 
functions. If in the Fredholm equations we have K(x,s) = 0 for x < s, i.e., the kernel is 
nonzero only on the triangle ,, bxaxsa ≤≤≤≤  then the equations (1.5) and (1.6) 
become the Volterra equations of the first and second kinds, respectively: 
 

∫ ≤≤=
x

a

bxaxfdssusxK ,),()(),(  (1.7) 

( ) ( ) ( ) ( )∫ ≤≤=−
x

a

bxaxfdssusxKxu .,,λ  (1.8) 

 
Further we will consider only the Fredholm equations of the second kind because the 
equations of the first kind are ill posed and some special methods are required for their 
research. 
 
If the right-hand side of the equation (1.6) is equal to zero, then we have a homogeneous 
Fredholm equation of the second kind which can be written as  
 

( ) ( ) ( )∫ ≤≤=
b

a

bxadssusxKxu .,,λ  (1.9) 
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This equation admits the zero (trivial) solution u(x) = 0. In this case the eigenvalue 
problem can be formulated. If the equation (1.9) has a nonzero solution ( )xu iϕ=  for 
some parameter iλ  then this parameter is called an eigenvalue of the kernel K(x,s) or of 
the equation (1.9) and the solution ( )xiϕ  is called an eigenfunction. 
 
If the kernel K(x,s) is a continuous function on the square bsabxa ≤≤≤≤ ,  and λ  is 
not an eigenvalue of this kernel then the non-homogeneous equation (1.6) has a unique 
continuous solution u(x), [ ],,bax∈  for any continuous right-hand side f(x). Otherwise 
the non-homogeneous equation either has no solution or has an infinite number of 
solutions. 
 
If the kernel K(x,s) and the right-hand side f(x) are continuous together with their 
derivatives of order p then a solution has continuous derivatives of order p. 
 
In practical applications the Fredholm equations of the second kind with a real 
symmetric kernel K(x,s), i.e., when K(x,s) = K(s,x), play an important role. 
 
A symmetric kernel has the following properties: 
1) a symmetric kernel has at least one eigenvalue; 
2) all eigenvalues of a symmetric kernel are real; 
3) eigenfunctions ( )x

i
ϕ  of a symmetric kernel are orthogonal, i.e., 

( )∫ ≠=
b

a
ji jidxx .,0ϕϕ  

 
The Volterra equation (1.8) has no eigenvalue. The corresponding homogeneous 
equation with ( ) 0≡xf  has the trivial solution u(x) = 0 only. Hence, the 
nonhomogeneous equation (1.8) has a solution and this solution is unique for any value 
of λ . 
 
So, the basic problems for the considered integral equations are the following:  
1) finding a solution of a nonhomogeneous integral equation for a given value of the 

parameter λ ; 
2) the calculation of eigenvalues and finding the corresponding eigenfunctions of a 

homogeneous integral equation. 
 
Both stated problems are very interesting in the theory and applications of integral 
equations. However, the first problem is of greater interest (in our opinion) in practical 
applications. Since a solution u(x) of the equation (1.6) can be obtained very seldom, 
many different numerical methods for solving these equations are developed. In 
addition, the Volterra equation (1.8) can be considered as a special case of the Fredholm 
equation. A function u(x) is called a solution of the equation (1.6) if the identity  
 

( ) ( ) ( ) ( )∫ ≤≤≡−
b

a
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UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS – Vol. II - Numerical Methods for Integral Equations - A.M. Denisov, 
I.K. Lifanov and E.V. Zakharov 
 

©Encyclopedia of Life Support Systems (EOLSS)  

is valid. 
 
When considering numerical methods, we will suppose that the parameter λ  is not an 
eigenvalue of the equation and the equation has a unique solution. Then the parameter 
λ  can be assumed to be equal to unity that is equivalent to introducing a new kernel 
and we arrive at the equation 

( ) ( ) ( ) ( )∫ ≤≤=−
b

a

bxaxfdssusxKxu .,,  (1.11) 

The quadrature method is widely used among numerical methods for solving integral 
equations. 
 
2. Quadrature Methods 
 
These methods are based on the use of numerical integration formulae for the 
calculation of definite integrals that enter into integral equations. Therefore we turn our 
attention to the notion of a definite integral and its calculation with the help of 
quadrature formulae. 
 
- 
- 
- 
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