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1. Introduction 
 
The aim of this chapter is to introduce the reader to basic aspects of numerical methods 
in linear elasticity. This subject is so vast that it is not possible to cover it exhaustively 
here. So, we have chosen to focus on some general aspects and to point out some 
particular difficulties. The outline of the chapter is therefore as follows. After a brief 
review of continuum mechanics, we state the problem of three-dimensional linearized 
elasticity, first in static and then in dynamic forms. For these two problems, the main 
theoretical results are given, and in the elastodynamics case, we make a survey of the 
two algorithms which are commonly used to solve this problem, and we point out their 
main advantages and drawbacks. The last part of the chapter is devoted to a very 
common particular case in elasticity: thin structures (beams, plates and shells). Here, it 
is possible to “simplify” the formulations in deriving a one or two-dimensional problem 
from the original three-dimensional problem. The process is illustrated with plates and 
some examples of the numerical difficulties are discussed. 
 
Finally, for a more general and complete overview of the subject, we refer the reader to 
the books listed in bibliography. 
 
2 Basic Aspects of Continuum Mechanics 
 
2.1 Strain Tensor 
 
In space 3\ , referred to as an orthonormal system of coordinates, say 1 2 3( ; , , )O x x x , we 
consider a solid body which occupies, in its reference state, the bounded open sets Ω  
and, after deformation, the open set ′Ω . We denote by 1 2 3( , , ) ( )x x x x= ≡u u u  the three-
dimensional displacement of any point M  of Ω  with 1 2 3( , , )O M x x x= . We denote by 
M ′  the image of M  through the mapping  u . It means that: ( )M M x′ = u . So, if we let 

1M  and 2M  be two points of Ω , we have: 
 

(2) (1)
1 2 1 2 ( ) ( )M M M M x x′ ′ = + −u u . 

 
If we suppose that u  is a differentiable function, a first order Taylor expansion gives: 

(1)
1 2 1 2 1 2 1 2 1 2( ) ( ) ,M M M M x M M M M O M M

M
′ ′ = + ⋅ +

∂
∂
u  

where 
M
∂
∂
u  is the tensor whose components are 

jx
∂
∂
iu . Moreover, 1 2( )O M M  is a vector 

function which tends to 0 as 1 2M M  →  0 (following this section, 1 2( )O M M  will 
denote various functions which have the same property). Introducing the tensor 

F I
M

= +
∂
∂
u , we obtain: 

 
1 2 1 2 1 2 1 2. ( ) ,M M F M M M M O M M′ ′ = +  
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( I  is the identity operator). Then, the relative length variation of segment 1 2M M  of the 
solid Ω , is given by: 
 

1 2 1 2
1 2

1 2
( ) ,

M M M M
M M

M M
′ ′ −

=δ  

 
and it is easy to see that: 
 

1/ 2
1 2 1 2

1 2 1 2
1 2 1 2

. . .
( ) 1 ( ),

.

T T

T
M M F F M M

M M O M M
M M M M

⎛ ⎞
= − +⎜ ⎟⎜ ⎟
⎝ ⎠

δ  

 
where TF  is the transpose of F . Then, we introduce the total strain tensor: 
 

1( ) . ,
2

TF F I
M M M M

⎛ ⎞
= − = + +⎜ ⎟⎜ ⎟

⎝ ⎠
� ∂ ∂ ∂ ∂
γ

∂ ∂ ∂ ∂

T Tu u u u
u  

 
which is symmetric but does not depend linearly on the displacement u . And then, the 
total strain tensor measures the relative length variation because we have: 
 

1/ 2
1 2 1 2

1 2 1 2
1 2 1 2

. ( ) .
( ) 1 2 1 ( ),

.

T

T
M M M M

M M O M M
M M M M

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟
⎝ ⎠

�γ
δ

u
 

 
and using 21 1+ +∼ εε  when ε  is small, we deduce that: 
 

1 2 1 2
1 2

1 2 1 2

. ( ) .
( ) .

.

T

T
M M M M

M M
M M M M

�
�

γ
δ

u
 

 
2.2 Linearized Strain Tensor and Small Displacements Hypothesis 

The small displacements hypothesis consists in assuming that the tensor 
M
∂
∂
u  is 

negligible relative to the identity tensor, in the expression for the tensor F . So the total 
strain tensor is approximated by the linearized strain tensor: 
 

1( ) ,
2

T

M M
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

∂ ∂
γ

∂ ∂
u u

u  

 
which is also symmetric but now depends linearly on the displacement u . The 
components of the tensor ( )γ u  are: 
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( )1 1( ) ,
2 2

ji
ij i j

j jx x

⎛ ⎞
= + ≡ +⎜ ⎟

⎜ ⎟
⎝ ⎠

∂∂
γ ∂ ∂

∂ ∂j i

uu
u u u  

 
where Latin indices , , , ....i j k l  take on values 1,2 and 3. 
 
An important problem is to characterize displacements whose strain tensor is null. For 
example, in the case of the total strain tensor, ( )�γ u =0 means that, for each segment 

1 2M M , we have 1 2( )M Mδ =0. The length of the segment is constant and the 
displacement u  is an isometry. Let us now examine the case of the linearized strain 
tensor. 
 
Theorem 2.1. The displacement fields u , such that ( )γ u =0, are characterized by: 
 

( )x A= + ×ω ΟΜu  
 
where A  and ω  are constant vectors in 3\ . The first one is a translation movement 
while the second is an infinitesimal rotation. Such a movement is called a rigid-body 
motion. 
 
Let u  be a displacement such that ( )γ u =0. Then, for all i and j, we have: 
 

1( ) ( ) 0.
2ij i j= + =γ ∂ ∂j iu u u  

 
A simple calculation leads to the following identity for all vector field υ : 
 

( ) ( ) ( ),i k j ik i jk k ij= +∂ υ ∂ γ υ ∂ γ υ −∂ γ υj  
 
which implies that displacement u  is such that: 0ij k =∂ u  for all , ,i j  and k. 

Consequently, u  is a first order polynomial function: 1 2 3( , , )k k ki ix x x a b x= +u , where 

ka  and kib  are constants. Moreover, we adopt the summation convention on repeated 
indices. In a vector form, this equation can be written as: ( ) .x A B OM= +u , where A  
is the vector of components ka  and B  the matrix of components ijb . Then, putting the 

expression in ( ) 0ij =γ u , we deduce that: 0ij jib b+ = . Matrix B  is antisymmetric so 
can be represented by a vector product: there exists a vector, say ω , such that:  

.B OM = ×ω ΟΜ  (vector product), which gives the stated result. 
 
Remark 2.2. It is important to note that a vector product is not really a rotation. But 
when the norm of the vector ω  is small, which is precisely the frame of small 
displacements hypothesis, this approximation is justified. Geometrically, it is like 
approximating the tangent of an angle by the angle itself. 
 
2.3 Stress Tensor 
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Let us go back to the solid body which occupies the bounded open set Ω . Now, forces 
are applied on it. Physically speaking, there only exist two types of forces, even if it is 
sometimes convenient to use concentrated forces, as point or line ones. 
 
-The first ones are volume forces, for example self weight, electric forces or inertia 
forces. They are applied in the volume of Ω . In the following, their density will be 
denoted by f . 
 
-The second are surface forces, for example pressure or aerodynamic forces. They are 
applied on the boundary Γ  of Ω . In the following, their density would be denoted by 
g . 
 
Let us now consider a thin short cylinder inside Ω , whose axis is parallel to a given 
vector n . Let M  be the center of this cylinder. The circular section, say dS , containing 
M , divides the cylinder into two parts, say I and II, the cylinder being oriented from I 
towards II by n . When the body is loaded, each “half-cylinder” exerts force on the 
other. By definition, the stress vector at point M  along the direction n  is the vector 
C , such that the load applied by the part II of the cylinder on I, is equal to C dS . Let 
us note that the component of C  along n  is called the normal stress, while the 
tangential part is called the shear stress. 
 
From a practical point of view, one could be interested in having the stress vector at M  
along any direction in 3\ . That is why one introduces the (Cauchy) stress tensor in the 
following way. The space being referred to an orthonormal system of coordinates, we 
can define the stress vector at M  along the three directions ( ; )iO x , say iσ . Then, we 
build the tensor, say σ , with three lines and three columns, where column i  contains 
the components of iσ . The two main properties of this tensor are the following. The 
stress vector along any direction n  is the vector .C = σ n . This property is obtained by 
writing the equilibrium of the forces applied on a small tetrahedron containing point 
M . Then, using the equilibrium of the momentum applied on a small parallelepiped 
around M , we can show that the stress tensor is symmetric. 
 
Remark 2.3. A stress is a surface force. In the international system of units, it is 
expressed in Pascals. One Pascal corresponds to the pressure due to a force of one 
Newton acting on a surface of one square meter. In practice, the mega-Pascal, denoted 
by MPa and equal to 106 Pa, is very often used. 
 
2.4 Generalized Hooke’s  Law 
 
We adopt the small displacements hypothesis, and assume that the initial configuration 
of the body is its natural state. Then, the stress tensor is defined in terms of the 
(linearized) strain tensor by the generalized Hooke’s law (summation convention on 
repeated indices): 
 

( ),ij ijkl klR=σ γ u  
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where ijklR  are given functions of the position x  called elasticity coefficients. Tensor 

R  is called the stiffness tensor. When the ijklR ’s are constant, the body is called 
homogeneous . Moreover, the stiffness tensor is assumed to satisfy the following 
symmetry properties: 
 

ijkl jikl ijlk klijR R R R= = = . 
 
The two first symmetry properties are due to the corresponding symmetries on stress 
and strain tensors. The last one is due to thermodynamics considerations. Nevertheless, 
tensor R  depends on 21 different coefficients, which are obtained experimentally. 
 
In the particular case of a homogeneous and isotropic material, tensor R  only 
depends on 2 coefficients: the Lamé coefficients, denoted by λ  and μ , or, equivalently, 
Young’s modulus E  and Poisson’s ratio ν . Then, Hooke’s law is written: 
 

E ( ) ( ) .
1 1 2ij ij ll ij

⎛ ⎞
= +⎜ ⎟+ −⎝ ⎠

ν
σ γ γ δ

ν ν
u u  

  
In this expression, 11 22 33( ) ( ) ( ) ( )ll ≡ + +γ γ γ γ μu u u , and ijδ  is the Kronecker symbol, 

i.e. 1ij =δ  , for i j=  and ijδ  = 0, for i j≠ . 
 
Remark 2.4. We have the following relations between E  and ν , on the one hand, and 
λ  and μ  on the other: 
 

(2 3 )
2( )

E +
= =

+ +
μ μ

ν
μ μ

λ λ
λ λ

 

 
and conversely: 
 

E E
2(1 ) (1 )(1 2 )

=
+ + −

ν
μ

ν ν ν
= λ . 

 
In the international system of  units, E , λ  and μ  are expressed in Pascals. ν  is non-
dimensional . 
 
3. The Three-Dimensional Linearized Elasticity 
 
3.1 Variational Formulation 
 
Let Ω  be a bounded open subset of 3\  and Γ , its boundary. We split the boundary Γ  
into two parts: 0 1,Γ = Γ Γ∪  with 0 1Γ Γ =∩ Ø . Then, the solid body, which occupies the 
domain Ω , is assumed to be fixed on 0Γ . Moreover, the solid is subjected to a volume 
force field, of density f , and to surface forces of density g  along 1Γ . 
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Let us introduce the space of admissible displacements: 
 

1
1 2 3 0{ ( , , ) ( ); 0 on }i iV H= = ∈ = Γυ υ υ υ υ υ/ Ω .    (3.1) 

 
Then the stress tensor is result of application of what is called, in solid mechanics 
literature, the principle of virtual work: 
 

, ( ) ( ).ij ijV dx l∀ ∈ =∫υ σ γ υ υ
Ω

 

 
The linear form l  corresponds to the loading applied to the structure, and is defined by: 
 

1
( ) ( ).i i i il f dx d x

Γ
= + Γ∫ ∫υ υ υg

Ω
      (3.2) 

 
Then, introducing Hooke’s law, we obtain the variational formulation of the three-
dimensional linearized elasticity: 
 

Find such that for all :

( , ) ( ) ( ) ( ).ijkl kl ij

V V

a R dx l

∈ ∈⎧⎪
⎨ ≡ =⎪⎩ ∫

υ

υ γ γ υ υ

u

u u
Ω

     (3.3) 

 
Because of the symmetry of the stiffness tensor: ijkl klijR R= , the bilinear form a  is 
symmetric : ( , ) ( , )a a=υ υu u . Now, we can state the main result of this section. 
 
Theorem 3.1. Let Ω  be a bounded connected open subset of 3\  with a Lipschitz 
continuous boundary, and let 0Γ  be a measurable subset of Γ , whose measure (with 
respect to the superficial measure ( )d xΓ ) is strictly positive. Let us assume that the 
stiffness tensor satisfies the two following properties: 
 
(1) ( )ijklR L∈ ∞ Ω  for all indices i, j , k , and l. 
(2) Ellipticity : there exists a strictly positive constant C  such that: 
 
for all symmetric tensor τ ,       ijkl ij kl ij ijR C≥τ τ τ τ . 
 
Then, there exists a unique V∈u  solution of the variational problem (3.2)-(3.3). 
 
The proof is based on Lax-Milgram theorem and detailed in Variational Statement of 
Problems. Variational Methods (cf. also [2] or [3]). In this section, we just focus on 
some points. Property (1) ensures that the bilinear form a is continuous on V , while 
property (2) is used to prove the ellipticity of a. But we need also an additional result 
called Korn’s inequality: there exists a strictly positive constant, say C , depending on 
Ω , such that, for all 1 3

1 2 3( , , ) [ ( )]H= ∈υ υ υ υ Ω , we have: 
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1/ 2
3 32 2

1, 0,0,, 1 1
( ) .ij i

i j i
C

= =

⎧ ⎫⎪ ⎪≤ +⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑υ γ υ υΩ ΩΩ

 

 
Then, it is possible to prove the following kind of Poincaré-Friedrichs inequality: 
 
Theorem 3.2. If Ω  is a bounded connected open subject of 3\  with a Lipschitz 
continuous boundary, and if the measure of  0Γ  is strictly positive, the mapping: 
 

1/ 2
3 2

0,, 1
( )ij

i j=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑6υ γ υ

Ω
       (3.4) 

 
is a norm on V  which is equivalent to the usual norm 1, .. Ω . 
 
We will not prove this result, but only check that the mapping (3.4) is a norm on V . Let 

us consider a displacement field υ  such that :{ }1/ 223
, 1 0,

( )iji j=∑ γ υ
Ω

 = 0. Then, the 

linearized strain tensor associated with υ  is null. Consequently, υ  is a rigid-body 
motion (cf. Theorem 2.1): ( )x A= + ×υ ω ΟΜ . As 0Γ  has a strictly positive measure, 
there exist at least three points which are not on the same line. So we deduce that 
vectors A  and ω  are necessarily null, and displacement υ  also. 
 
Remark 3.3. This result is very important in practice.  It shows that the boundary 
condition must eliminate the rigid-body motions, i.e. translations and rotations, if we 
want the problem to be well posed. One has to keep this is mind when introducing the 
boundary conditions in a computational software. 
 
To conclude this section, let us just give two immediate consequences of these results 
(the details can be found also in Variational Statement of Problems. Variational 
Methods). 
 
(1) The displacement u , solution of (3.2)-(3.3), continuously depends on the data. 

There exists a strictly positive constant C  such that for all solution u : 
 

10,1, 0,{ }.C f Γ≤ +u gΩΩ  

 
(2) As the bilinear form a , given in (3.2)-(3.3), is symmetric and positive definite, the 

solution u  realizes the minimum of the strain energy, say J , of the structure: 
 

1 1( ) ( , ) ( ) ( ) ( ) ( )
2 2 ijkl kl ij i i i iJ a l R dx f dx d x

Γ
≡ − = − − Γ∫ ∫ ∫υ υ υ υ γ υ γ υ υ υg

1Ω Ω
.  
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