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Summary 
 
This paper highlights the main ideas that shaped the field of linear and discrete 
optimization, which is a main pillar of deterministic operations research. The history is 
sketched starting with the early contributions of Fourier, Weyl, Minkowski, Farkas, 
continuing through the golden age of Dantzig, von Neumann, Fulkerson, Hoffman, 
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Edmonds (who laid the foundations of the field), and ending with its most recent 
developments. It describes the ideas that made this branch become one of the most 
lively and productive in discrete mathematics. It surveys the basic methods and the 
underlying theory used in solving linear and discrete optimization problems. These 
topics include: algebra and geometry of linear systems, fundamental algorithms, 
spanning trees, shortest paths, job scheduling, network flows, routing, matchings and 
extensions, matroids, packing and covering. It also discusses computational complexity, 
integral polyhedra, cutting planes, approximation schemes and heuristics. 
 
1. Introduction 
 
Real-world applications of optimization often concern economic efficiency: resource 
allocation, production and distribution of commodities, routing and sequencing of 
materials in networks underlying manufacturing, computation, or communication 
processes. Such applications are commonly formulated as linear programming models 
for managerial decision making. Linear programming is often cited as one of the most 
heavily used scientific computing tools, a claim whose validity is evidenced by the 
wealth of practical applications. Every organization of moderate size, whether private or 
public, faces routine planning problems either of maximizing profit under restrictions on 
resource availability for production, or of minimizing operational cost under constraints 
on levels of services provided. 
 
The linear programming models formulated for these applications, however, usually 
neglect the inherently discrete nature of their basic commodities or components, and 
thus may represent only coarse approximations to the processes being modeled. In many 
cases, models of sufficient accuracy are obtained only through explicit inclusion of 
discrete-valued restrictions on problem variables. The resulting integer programming or 
combinatorial optimization models define the area of operations research and applied 
mathematics known as discrete and combinatorial optimization. In addition to natural 
discreteness conditions on problem components representing quantities of goods 
produced, stored, or shipped, integer-valued variables can also be used to model logical 
decisions. Thus, models involving design considerations often are formulated as integer 
programming problems. Some examples include: optimal location of product 
distribution centers or emergency public service centers, optimal layout of networks for 
computation or communication, and optimal product construction given component 
alternatives. 
 
The fundamental mathematical model for such applications is 
 

 : ;  0,  j j ij j i j
j j

max c x a x b i x integral j
⎧ ⎫⎪ ⎪≤ ∀ ≥ ∀⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (1) 

 
or in matrix-vector notation, max{cx : Ax ≤ b; x ≥ 0, integral}. (Transpose notation is 
suppressed, as it is clear from the context.) A standard interpretation of this model is 
that values xj are sought for various production activities in order to maximize total 
profit, with activity j returning profit at rate cj. Resource availability limits the 
production process: only bi units of resource i are on hand over the planning horizon, 
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and resource i is consumed by production activity j at rate aij. Note the explicit 
stipulation that production levels xj are discrete, i.e., integer-valued. Straightforward 
variations on this model, e.g., models requiring minimization and models with equality 
constraints, also are considered. 
 
2. Foundations 
 
2.2 Algebra and Geometry of Linear Systems 
 
The constraints of the integer programming model stipulate that its feasible solutions 
satisfy a finite system of linear inequalities/equalities with additional integrality 
restrictions. Directing attention first to the linear relations, systematic study of the 
structure of solutions to linear systems of equalities dates back to the mid-eighteenth 
century (see Schrijver (1986), with fundamental contributions to the theory of 
determinants and matrices by Cramer, Cauchy, Sylvester, and Caley, and results on 
solving linear equality systems by Lagrange, Legendre, and Gauss, which now are 
considered classical in linear algebra. Investigation of linear inequality systems began in 
the early nineteenth century with the work of Fourier, and continued into the 1900s with 
the fundamental results of Gordan, Farkas, Minkowski, Voronoï, and Carathéodory on 
finite cones, culminating with the contributions of Weyl and Motzkin in the mid-1930s. 
With respect to inhomogeneous inequality systems, i.e., systems that define polyhedra, 
there were also many early contributors, including Weyl, Motzkin, Helly, and Steinitz; 
development of this subject flourished with the advent of linear programming in the late 
1940s. 
 
A subspace of n\  (the real n-vectors) contains 0 and is closed under linear 
combinations. Geometrically, the origin is a subspace, as are the lines, planes, and 
hyperplanes in n\  containing the origin. Algebraically, the rows of any matrix 

m nA ×∈\  naturally give rise to two subspaces: the row space of ,  { : }mA R yA y= ∈\ , 
comprising all linear combinations of the rows; the orthogonal complement of R, 
denoted S = {x : Ax = 0}, consisting of all points orthogonal to each element of R. In 
fact, orthogonality provides a duality relation linking pairs of subspaces; this relation is 
completely symmetric, in the sense that R is also the orthogonal complement of S. Thus, 
any vector not in R must also fail to be in the orthogonal complement of S, a fact 
expressed by the following theorem of the alternative, whose origins can be traced to 
the work of Gauss. 
 
Theorem 1 (Fredholm 1903)  
 
For m nA ×∈\  and nc ∈\ , exactly one holds: 
 

 
( )    ;  

( )    0,  0

m

n

i y such that yA c

ii x such that Ax cx

∃ ∈ =

∃ ∈ = ≠

\

\
 (2) 

 
A further consequence of the duality relation is that there exists a second matrix B, 
whose rows are elements of S, for which R = {z : Bz = 0}. Any basis of S, i.e., any 
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linearly independent generating set, gives such a matrix B. There are thus two ways to 
describe any subspace: either internally, as the set of vectors constructed via linear 
combinations of a (finite) basis, or externally, as the set of solutions to a finite linear 
system of homogeneous equations, i.e., a finite intersection of homogeneous 
hyperplanes. 
 
A cone contains 0 and is closed under nonnegative linear combinations. Just as with 
subspaces, two cones arise naturally from the rows of m nA ×∈\ : the row cone of A,  
K = {yA : y ≥ 0}, generated by nonnegative combinations of its rows; the dual of K, 
given by  L = {x : Ax ≥ 0}, whose members make nonnegative inner product with each 
element of K. Like orthogonality, cone duality is symmetric and K is the dual of L, as is 
summarized in the following theorem of the alternative, analogous to Theorem 1. 
 
Theorem 2 (Farkas 1894)  
 
For m nA ×∈\  and nc ∈\ , exactly one holds:  

( ) 0 such that ;   

( )  such that 0,  0.n

i y yA c

ii x Ax cx

∃ ≥ =

∃ ∈ ≥ <\
 (3) 

 
In geometric terms, the theorem assures that if c is not in the cone K = {yA : y ≥ 0} 
(when (i) fails), there exists a hyperplane {z : xz = 0}, defined by x obtained from 
alternative (ii), which separates c from K, i.e., for which xc < 0, but xz ≥ 0 for all z ∈ K. 
The descriptive duality of constraints and generators for cones follows from the fact that 
every cone that can be expressed with finitely many constraints (as with L above), i.e., 
every finitely constrained or polyhedral cone, is also finitely generated (like K), and 
conversely. These fundamental results are due to Minkowski (1896) and Weyl (1935), 
respectively. Hence there exists a matrix B for which L = {uB : u ≥ 0} and K = {v : Bv ≥ 
0}, the dual of L, and any finite cone may be represented, just as with subspaces, either 
as constructed from a finite set of generators, or as determined by a finite intersection of 
homogeneous half-spaces. 
 
Theorem 3 (Minkowski 1896; Weyl 1935)  
 
A cone is finitely generated if and only if it is polyhedral. 
 
Thus finite cones, arising from finite homogeneous systems of linear inequalities, 
provide an inequality counterpart to linear subspaces and much of the algebraic and 
geometric development for subspaces carries over directly to finite cones. One 
significant difference deserves mention, however. Recall that for subspaces all bases are 
equicardinal, i.e., that every linearly independent generating set has the same number of 
elements. This fails in the cone setting, although the following local version of this 
result does remain valid. 
 
Theorem 4 (Carathéodory 1911) 
 
Where K = {yA : y ≥ 0}, with m nA ×∈\ , each element of K is a nonnegative 
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combination of linearly independent rows of A. 
 
Inhomogeneous linear equality systems give rise to affine spaces, sets closed under 
affine combinations (linear combinations with unit coefficient sum). For m nA ×∈\  and 

mb ∈\ , 
 
S = {x : Ax = b} is an affine space, and conversely, every affine space can be expressed 
in this form. Geometrically, affine spaces are simply translates of subspaces. For 
inequality systems, the corresponding geometric object is a finite intersection of 
halfspaces, and is termed a polyhedron. Any polyhedron is convex, i.e., closed under 
convex combinations (nonnegative combinations with unit coefficient sum). 
 
Theorem 2 implies the following characterization of inconsistent inequality systems, or 
equivalently, of empty polyhedra: for m nA ×∈\ , mb ∈\ , system {Ax ≥ b} has no 
solution if and only if there exists a vector y satisfying {yA = 0, yb > 0, y ≥ 0}. This 
restatement allows a direct adaptation of Carathéodory’s Theorem to inequalities, a 
result that also follows from the work of Helly on general convex sets. 
 
Theorem 5 (Helly 1923) 
  
For m nA ×∈\  and mb ∈\ , {x : Ax ≥ b} = Ø if and only if some subsystem of [A b] 
comprising linearly independent rows is also inconsistent. 
 
A polytope is a convex set generated (via convex combinations) from a finite point set. 
Carathéodory (1911) established a geometric analogue of Theorem 2 for polytopes: 
when a point is not in a polytope, it is separated from the polytope by a hyperplane. The 
descriptive equivalence of constraints and generators also extends to the present setting. 
Steinitz (1916) established the equivalence of polytopes and bounded polyhedra. For 
unbounded polyhedra, the following Double Description Theorem shows that not only 
convex combinations due to polytopes, but also nonnegative combinations arising from 
finite cones must be considered. 
 
Theorem 6 (Motzkin 1936)  
 
P is a polyhedron if and only if P = K + Q, for K a finite cone and Q a polytope; 
i.e., 
 

 { }1

{ : },   ,  

 : 0;  0;  1 ,    ,  

m n m

q p n q n
ii

P x Ax b for some A b R

P yB zC y z z for some B C

×

× ×
=

= ≥ ∈ ∈

⇔ = + ≥ ≥ = ∈ ∈∑
\

\ \
(4) 

 
Turning now to the integer programming discreteness conditions, integer-valued 
solutions for linear systems is also a well-studied topic in classical mathematics. Gauss 
(1801) established that a single linear equation with integral coefficients has an integral 
solution if and only if the greatest common divisor of its coefficients divides the right-
hand side element. Heger (1858) and Smith (1861) extended this result to linear equality 
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systems. 
 
Any subset of n\  containing 0 and closed under integral linear combinations is called a 
] -module; a ] -module which has a basis (linearly independent generating set) is a 
lattice. In fact, any ] -module of the form { : }myA y ∈]  with A rational, i.e., 

m nA ×∈_ , is a lattice. This follows from the classical result of Hermite (1851) that 
when A is of full row rank, there exists a unimodular matrix U (i.e., 

,| ( ) |   1n nU det U×∈ =] ), so that H = AU satisfies 0 ≤ hij < hii ∀ j < i and hij = 0 ∀ j > i 
for each row i; the Hermite normal form H is the unique matrix with the indicated 
properties. There are many important applications of the Hermite normal form; it 
suggests, for example, a simple proof of the following membership characterization for 
rational lattices (compare Theorems 1 and 2). 
 
Theorem 7 (Kronecker 1884)  
 
For m nA ×∈_  and nc ∈_ , exactly one holds: 
 
(i)    my such that yA c∃ ∈ =] ; 

(ii).  such that ,n mx Ax cx∃ ∈ ∈ ∉_ ] ] . 
 
A complete descriptive duality in the present setting holds for rational ] -modules of 
the form  { :   ; }m pM yA zB y z= + ∈ ∈_ ] , i.e., allowing both rational and integral 

combinations, along with those of the form { : 0;  }n qN x Cx Dx= ∈ = ∈_ ] , in which 
both orthogonality and integrality restrictions are present. (The matrices A, B, C, D here 
are rational.) 
 
Thus there has been significant classical development for various components of the 
integer programming model, with substantial structural similarity evidenced by results 
concerning nonnegative or integral solutions to linear systems. But, of course, the model 
stipulates both nonnegativity and integrality, directing geometric attention to the 
integral elements of polyhedra. Therein lies the complexity of integer programming. 
The classical treatment of combined nonnegativity and integrality restrictions is limited 
to a few special cases. 
 
A single equation a1x1 + · · · +anxn = b, with relatively prime coefficients ia +∈] , has 
an integral solution for all b ∈] ; this is immediate from Gauss’ divisibility criterion 
mentioned earlier. Moreover, the number of values of b +∈]  for which there is no 
nonnegative integral solution, was shown by Sylvester (1884) and Curran Sharp (1884) 
to be (a1 − 1)(a2 − 1)/2, assuming the ai are indexed in increasing order of magnitude. 
Frobenius posed the problem of determining the smallest b0 so that nonnegative integral 
solutions exist for all b ≥ b0; Schur (1935) established that b0 ≤ (a1 − 1)(an − 1). 
 
For systems of equations, say {Ax = b} with ,  m n mA b×

+ +∈ ∈] ] , Euler (1748) noted that 
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the coefficient of 1
1 · · · mb b

mz z  in the expansion of 

( ) ( )111 1
11

1 11 · · · · · · 1 · · · nm mnaa a a
m mz z z z

−−
− −  gives the number of nonnegative integral 

solutions. Other counting formulas were developed by Cayley, Sylvester, and Laguerre. 
One classical counting result is of particular interest. For A n n×∈]  of rank n, Hermite 
normal form uniqueness shows that any two bases of the lattice M = {yA : y n∈] } are 
related by a unimodular transformation; hence |det(A)| is an invariant of M, denoted 
δ(M) and called the determinant of M. Moreover, δ(M) gives the number of integral 
elements in {yA : 0 ≤ yi < 1 ∀ i}, the (partially open) parallelotope spanned by the rows 
of A. Hermite showed that one can bound the size of a “small” basis for M in terms of 

δ(M). Specially, in the following theorem, he established the bound
( )1 4

4
3n

n n
γ =

−⎛ ⎞
⎜ ⎟
⎝ ⎠

. In 

his classic treatise on the Geometry of Numbers, Minkowski (1896) improved this to 
2/2 2n

n

nn
n V eπ

γ ⎛ ⎞
⎜ ⎟
⎝ ⎠

= ≈ , where Vn is the volume of the unit n-sphere. 

Theorem 8 (Hermite 1850)  
 
Any n-dimensional lattice M has a basis b1, …, bn  such that ||b1|| … ||bn|| ≤ γnδ (M). 
 
The classical development of convexity theory provides important background for all 
areas of mathematical programming. Indeed, many results indicated above for 
polyhedra, such as separation results and Helly’s Theorem, remain valid for broader 
classes of convex sets. The fundamental issue of integer programming, understanding 
the structure of integral elements in polyhedra, again assumes central importance for 
general convex sets in the geometry of numbers, as in the following seminal result from 
this area. 
 
Theorem 9 (Minkowski 1893)  
 
If C n∩] = {0} for the 0-symmetric, convex set C n⊂ \ , then vol(C) ≤ 2n. 
 
0-symmetry means x C x C∈ ⇔ − ∈ . If this requirement is removed, it is obvious that 
the volume cannot be bounded, even for polyhedral sets. Nevertheless, this theorem has 
important counterparts for polyhedra. In particular, any polyhedron that fails to contain 
integral elements must be thin in some direction, and, furthermore, its width with 
respect to this direction is bounded by a function (ωn below), which depends solely on 
dimension. 
 
Theorem 10 (Khintchine 1948)  
 
If P n∩]  = Ø for polyhedron P n⊂ \ , then maxx P∈ dx − min x P∈ dx = ≤ ωn for some d 

n∈\ . 
 
A further classical result on the integral elements of polyhedra was obtained for cones 
of the form {yA : y ≥ 0} with A rational. For such cones it is not difficult to show that all 
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integral elements arise as nonnegative integral combinations of 
{ }: 0 1n

iyA y i≤ < ∀] ∩ , and thus have a finite generating set over the nonnegative 
integers, a so-called Hilbert basis (compare the if assertion of Theorem 3). 
 
Theorem 11 (Gordan 1873; Hilbert 1890)  
 
Let K = {x : Ax ≥ 0}, with m nA ×∈_  . 
 
Then there exists a matrix p nB ×∈]  such that { }:n pK zB z += ∈∩ ] ] . 

 
When a finite cone is pointed, i.e., x, −x in the cone implies x = 0, then its minimal 
generating set is unique, up to positive scalar multiplication. Moreover, van der Corput 
(1931) has established the uniqueness of the minimal Hilbert basis in this case. 
 
 
- 
- 
- 
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