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Summary 
 
We consider Markov chains in discrete and continuous time with a countable or finite 
state space. Markov chains are stochastic processes, which are characterized by the 
property that the evolution in the future depends only on the current state, not on the 
history. They constitute mathematical models for real-world processes in various fields 
like e.g. biology, economics, engineering, informational sciences, manufacturing, 
physics and telecommunication. The aim is to investigate the long run behavior of these 
processes. In a first step, we classify the system states according to their return behavior. 
We distinguish between transient, null recurrent and positive recurrent states. The latter 
ones are characterized by a finite expected return time. In a second step, we investigate 
the existence and computation of stationary distributions, which is a prerequisite for the 
existence of limit distributions. It will turn out that an irreducible Markov chain has a 
stationary distribution if and only if it is positive recurrent. The stationary distribution can 
be computed by solving a simple system of linear equations. Finally, we show that limit 
distributions exist, if and only if stationary distributions exist and if the Markov chain in 
discrete time is also aperiodic. In this case the stationary distribution is unique and is 
equal to the limit distribution. 
 
1. Introduction 
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A sequence of independent random variables is seldom a useful stochastic model for 
real-world applications. In reality, we frequently encounter dependencies. For example, 
the size of a population in one year depends on its current size. The price of a certain stock 
in one week depends on its current value. The number of connected calls in a telephone 
network in 5 minutes depends on the current number. Thus, there is the need for a 
mathematical model that allows dependencies on the one hand and should not be too 
complicated to analyze on the other hand. Markov models are best suited to balance this 
trade-off. In a Markov model, the stochastic evolution is allowed to depend on the current 
state of the system. This is sufficient in many cases. Moreover, there is a well-developed 
mathematical theory about the behavior of such systems, in particular as far as the long 
run behavior is concerned.  
 
One of the oldest Markov models is the queueing systems model (see Queuing Systems). 
More recent models are found in the area of finance and investment (see Investment 
Models). Typical applications can be found for example in biology, economics, 
engineering, informational sciences, manufacturing, physics and telecommunication. 
 
In what follows we will distinguish Markov models which evolve in discrete and in 
continuous time. The first section is devoted to discrete-time processes, which are called 
Markov chains; the second section deals with continuous-time Markov chains. 
Throughout we assume that the state space is finite or countable. 
 
2. Discrete-time Markov Chains 
 
We will denote by S the state space of the Markov chain. S is assumed to be finite or 
countable and it will often be a subset of the natural numbers  or of the integers . Let 
(Xn) be a sequence of random variables, taking values in S. Our interpretation is that Xn 
gives the random state of our system at time n. 

2.1 Definition and first Properties 

The sequence (Xn) is called a discrete-time Markov chain, if it satisfies the following 
property:  

for all states i, j, ik ∈ S 

 1 0 0 1 1

1

( | , ..., , )
( | )
n n n n

n n ij

X j X i X i X i
X j X i p
+ − −

+

= = = =

= = = =

P
P

      (1) 

provided that P (X0 = i0, ..., Xn-1 = in-1, Xn = i) > 0. 

Thus, the distribution of the state tomorrow depends only on the current state and not on 
the whole history. This is the so-called Markov property. pij is the transition probability 
from state i to state j. Throughout this section we will assume that the transition 
probabilities do not depend on the time, the transition takes place. Sometimes a Markov 
chain with this property is called homogeneous. The matrix P = (pij) is called transition 
matrix. The transition probabilities certainly satisfy for all i, j ∈ S 
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p p
∈
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For example, every row of P is a distribution on the state space. A matrix P with this 
property is called stochastic matrix. We will assume that the Markov chain has an initial 
distribution (pi). That means, P (X0 = i) = pi for i ∈ S. An easy observation is that the finite 
dimensional distribution of the Markov chain (Xn) is completely determined by the 
transition matrix P and the initial distribution p. More precisely, we have that (Xn) is a 
Markov chain with transition matrix P and initial distribution p if and only if for ik ∈ S 

 
0 1 100 0( , ..., ) ... .

n nn n i i i i iX i X i p p p
−

= = =P       (3) 

Thus, to describe the system, it is sufficient to know the initial distribution p and the 
transition matrix P.  

A Markov chain can easily be constructed in the following way: suppose (Yn) is a 
sequence of independent and identically distributed random variables with values in a set 
Z. g is a mapping g : S × Z → S. If we define the sequence (Xn) recursively by 

 1: ( , ), 1, 2,...n n nX g X Y n−= =       (4) 

then (Xn) is a Markov chain.  

An important role in the analysis of Markov chains play the matrix powers of P. We 
define P0 = I, where I is the identity matrix and denote the elements of the matrix Pn by 

( )n
ijp . It is important to realize that the matrix Pn is again a stochastic matrix and ( )n

ijp  
exactly gives the probability of getting from state i to state j in n steps, i.e. 

 ( )( | ) for all 0n
m n m ijX j X i p m+ = = = ≥P        (5) 

and if p is the initial distribution  

 ( )( ) .n
n i ij

k S
X j p p

∈
= = ∑P       (6) 

The probabilities ( )n
ijp  are therefore called n-step transition probabilities. It follows from  

Pn+m = Pn · Pm in particular that 

 ( ) ( ) , for , .n mn m
ij ik kj

k S
p p p i j S+

∈
= ∈∑        (7) 

This is the so-called Chapman-Kolmogorov equation. It states that the probability of 
getting from state i to state j in n + m steps equals the sum over the probabilities of getting 
from state i in n steps to a state k and then from k in m steps to state j, where the sum is 
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taken over all possible intermediate states k. 

2.2 Examples 

Typical examples of Markov chains are the following. 

Example 2.1 (Random Walk) 

Suppose that (Yn) is a sequence of independent and identically distributed random 
variables with distribution P (Yn = 1) = p, P (Yn = −1) = 1 − p, and p ∈ (0, 1). We assume 
that X0 = 0 and for n = 1, 2, ... 

 1
1

: .
n

n k n n
k

X Y X Y−
=

= = +∑       (8) 

According to our construction recipe, (Xn) is obviously a Markov chain on the state space 
S =  with g(i, y) = i + y. The transition probabilities are given by pii+1 = p and pii−1 = 
1 − p. 

Example 2.2 (Gambler's Ruin) 

Two players with initial fortune i and M − i start playing a sequence of coin tossing games. 
The probability that player 1 wins on a toss is p ∈ (0, 1) and in this case player 2 has to 
pay player 1 one unit. q : = 1 − p is the probability to win for the second player, in which 
case player 2 is paid by player 1. If the process enters state 0, then player 1 is ruined. If the 
process enters state M, then player 2 is ruined. Let us denote by Xn the fortune of player 1 
after n coin tosses. It is easy to see that Xn is a Markov chain on the state space S = {0, 1, ..., 
M} with transition probabilities p00 = pMM = 1 and for i ≠ 0 and i ≠ M, pii+1 = p and pii−1 = 
q. 

Example 2.3 (Inventory Model) 

Let (Xn) be the inventory level of a certain item at time n. We take S =  and assume that 
the total demand in period (n − 1, n] is given by a random variable Dn with values in . 
The sequence (Dn) should consist of independent, identically distributed random 
variables. A commonly used restocking policy consists of two values 0 < s < S. If at time 
n the inventory is below s, we fill up the stock level to S. In all other cases no 
replenishment is undertaken. Thus, we obtain for n = 1, 2, ..., with given initial inventory 
X0 ∈  

 1

1 1

( ) , if 

( ) , if 
n n

n
n n n

S D X s
X

X D X s

+
−

+
− −

⎧ − <⎪= ⎨
− ≥⎪⎩

       (9) 

where x+ = max(x, 0) denotes the positive part of x. (Xn) is a Markov chain and the 
transition probabilities are given by 
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Example 2.4 (Discrete Queueing Model) 

Suppose we have a queue with a single server. Arriving jobs are served according to 
first-come first-served. During the service of the n-th job, a random number of An jobs 
arrive. Again we assume that the sequence (An) consists of independent and identically 
distributed random variables with distribution P (An = i) = qi ≥ 0, i = 0,1, ..., and X0 ∈ 0 . 
Hence the state space is given by S = 0  and 

 1( 1) .n n nX X A+
−= − +      (11) 

(Xn) is a Markov chain and the transition matrix P has the form 

 

0 1 2

0 1 2

0 1

1

0
0 0

q q q
q q q

P q q
q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

      (12) 

2.3 Classification of States and Solidarity Properties 

A first step in the analysis of Markov chains is to determine the possible paths through the 
state space. As we will see, not every arbitrary movement is possible. A reasonable 
question is: is it possible to get from state i to state j and then back to state i again? Two 
states with this property are said to communicate. More precisely, states i and j 
communicate, if there exist natural numbers n, m such that ( )n

ijp ( )m
jip > 0. Moreover, we 

are now able to divide the state space into disjoint subsets of states that communicate with 
each other. It is easy to see that the relation ~ defined by i ~ j if and only if i = j or i and j 
communicate, is an equivalence relation. Thus, the relation induces a dissection of the 
state space in different classes. A Markov chain is called irreducible if the state space S 
consists of only one class, i.e. all states communicate with each other. 

Another important question is: starting in state i, at which time points is it possible to 
return to state i?  

We define by 

 ( ): gcd{ | 0}n
i iid n p= ∈ >N       (13) 

the period of state i ∈ S, where gcd is the usual greatest common divisor. We set gcd Ø := 
0. If di = 0 or 1, then state i is called aperiodic.  
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Hence, starting in state i, it is only possible to return to state i at time points ndi, n = 1, 
2, ... . Finally, the crucial question is: starting in state i do we return to a state i with 
probability 1 or less? Let us denote by τi : = inf{n ∈  | Xn = i} the first entrance time into 
state i. In order to simplify the notation, we write iP (A) = P (A | X0 = i). A state i is called 
recurrent, if iP (τi < ∞) = 1 and transient, if iP (τi < ∞) < 1. An important fact is that 
whenever two states i and j communicate they are both either recurrent or transient and 
have the same period. Thus, speaking in terms of classes: within one class of states, say C 
⊂ S, all states i ∈ C are either recurrent or transient and all have the same period. These 
kind of properties are called solidarity properties. Therefore, we will also say that a class 
is recurrent or transient or the whole chain, provided it is irreducible. Next, it will be 
important to characterize recurrence and transience of states. Sometimes the following 
criteria are useful: 

State i is recurrent if and only if ( )
0

n
n iip∞

=∑ = ∞ . Hence, state i is transient if and only if 
the sum is finite.  

In particular when the state space S is finite, it holds that class C ⊂ S is recurrent, if and 
only if (pij)i,j∈C is a stochastic matrix. Hence, class C is transient if and only if this matrix 
is not stochastic. 

Example 2.5 (Random Walk) 

Let us look at the random walk of Example 2.1 with p ∈ (0, 1). Obviously all states 
communicate, thus the Markov chain is irreducible. The period of the chain is two. We 
will use the preceding criterion to determine whether the Markov chain is recurrent or 
transient. It is sufficient to look at state 0. We get that 

 
( )(2 )

00  steps to the right,  steps to the left

2
(1 )

n

n n

p n n

n
p p

n

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

P
      (14) 

Using Stirling's formula to approximate n!, we derive that the Markov chain is recurrent 
for p = 1

2
 and transient for p ≠ 1

2
. 

- 
- 
- 
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