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Summary 
 
We consider Markov decision processes in discrete and continuous time with a finite or 
countable state space and an arbitrary action space. They are mathematical models for 
dynamic systems which can be controlled by sequential decisions and which contain 
stochastic elements. The main areas of applications are operations research, computer 
science, engineering and statistics. Typical problems arise, e.g. in queueing, inventory 
and investment models. At first, Markov decision processes are introduced and some 
examples are presented. In Section 3, we consider finite horizon decision problems and 
explain the backward induction algorithm. Section 4 is concerned with infinite horizon 
Markov decision problems. For each optimality criterion, results are formulated in as 
much generality as possible. Computational methods like policy iteration, policy 
improvement and linear programming are discussed. Section 5 introduces continuous 
time Markov decision processes. These problems can be reduced to discrete-time 
problems and thus can be solved in the same way. The last section identifies some 
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extensions and further stochastic decision processes. 
 
1. Introduction 
 
Markov decision processes are dynamical systems that can be controlled by sequential 
decisions. The successive state transitions are uncertain, but the probability distribution 
of the next state, as well as the immediate reward, depend only on the current state and the 
current decision. These models are also known as stochastic dynamic programs or 
stochastic control problems. They have been applied in various different subject areas, 
such as queueing systems, inventory models, and investment models (see Queuing 
Systems, Inventory Models, Investment Models). 
 
Markov decision processes serve as models for controlled dynamic systems of the 
following type. At decision time points, the controller of the system is allowed to choose 
an action according to rules given by the system. The choice is based on the knowledge of 
the current state and has two consequences: it generates an immediate reward for the 
decision-maker and determines a probability distribution for the next state of the system. 
The aim is to select a sequence of actions, also called a policy, in such a way as to 
maximize an overall performance criterion. Since the choice of actions influences the 
transition probabilities of the system, the controller has to be aware of all consequences of 
his chosen decisions. These stochastic control problems can roughly be classified in 
 
• Continuous-time or discrete-time decision processes, depending on which decision 

time points are allowed. 
• Finite or infinite horizon decision problems. 
• Total discounted, or average expected reward decision problems when the time 

horizon is infinite. 
 
In our exposition, we will restrict throughout to stochastic decision processes with finite 
or countable state spaces. The main objectives of the theory of Markov decision processes 
are to characterize optimal policies and the optimal value of the problem as well as to 
provide computational methods to identify optimal policies and the associate values. 
Basic to all these problems are the optimality equations or Bellman equations. Depending 
on the optimality criterion they have different forms (see Dynamic Programming and 
Bellman's Principle). 
 
The theory of Markov decision processes has been extensively developed since the first 
books by Bellman (1957) and Howard (1960) and is still an active area of research with 
various open questions. In Sections 2 and 3, we will first deal with finite horizon 
problems. Some examples are presented and we explain the backward induction 
algorithm. Infinite horizon problems with discrete-time parameter are considered in 
Section 4, where we investigate both the expected total reward problem and the expected 
average reward problem. Finally, Section 5 is concerned with continuous-time Markov 
decision processes. Throughout the exposition, focus lies on computational methods. 
Thus, we discuss methods like policy iteration, policy improvement and linear 
programming. 
 
2. Problem Definition and Examples 
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We start our investigations with discrete-time sequential decision problems over a finite 
time horizon. The decision-maker has to choose actions at time points 0, 1, 2, ..., N − 1. 
These time points are called decision epochs or stages and N is the planning horizon of 
the problem. At stage n, the system is in some state i ∈ Sn. Sn is called the state space at 
stage n. Then the controller has to choose an action from the set An. However, depending 
on the current state i ∈ Sn, not all possible actions may be admissible. The admissible 
actions in state i at stage n are collected in a set An(i) ⊂ An. Upon the choice of an action a 
∈ An(i), the decision maker obtains the reward rn(i, a). Moreover, the action determines 
the transition law with which the system moves into the new state. pn(i, a, j) denotes the 
probability that the next state of the system is j ∈ Sn+1, given the system is in state i ∈ Sn 
and action a is applied. pn(i, a, j) is called transition probability at stage n. When the final 
state i ∈ SN is reached at the planning horizon, the controller obtains a final reward gN(i). 
The collection of the objects (Sn, An, pn, rn, gN) is called an N-stage stochastic dynamic 
program or Markov decision process. It is assumed that all state spaces Sn are finite or 
countable and that all reward functions rn and gN are bounded from above. 
 
A classical example for a Markov decision process is an inventory control problem. The 
situation is here as follows. Since the demand for a product is random, a warehouse will 
keep an inventory of this product to cope with this uncertainty. Every month, the manager 
has now to decide how much items of the product should be ordered, based on the 
knowledge of the current stock level. Of course, the order should not be too high, since 
keeping the inventory is expensive. On the other hand, the order should not be too small, 
since this could lead to lost sales or penalties for being unable to satisfy the customers 
demand. Thus, the manager faces the problem of finding an order policy that maximizes 
the profit. 
 
We will next give a formulation of this and further problems in the framework of 
stochastic dynamic programming. 
 
Example 2.1 (Inventory Control Problem with Backlogging) 
 
To get a simple mathematical formulation of the inventory control problem, we will make 
the following assumptions: order decisions take place at the beginning of each month and 
the delivery occurs instantaneously. All orders, which arrive during one month, are 
satisfied at the end of the month. The capacity of the warehouse is B units. In this example, 
we assume that customer orders, which could not be satisfied in one period, are 
backlogged for the next month. Thus, the inventory can get negative. 
 
Let in be the inventory on hand at stage n which is the beginning of the (n + 1)th month. in 
can take values in the set Sn = {..., −1, 0, 1, ..., B}. An order of an units costs cnan. The 
action space is An = 0 .  Since the warehouse capacity is restricted to B, not more than B 
– in items can be ordered. Thus An(in) = {0, 1, ..., B − in}. The holding and penalty costs are 
Ln(in) ≥ 0 when the stock level is in. The immediate reward or negative cost of the system 
is therefore rn(in, an) := −(cnan + Ln(in + an)). The inventory after N months is worth d per 
unit, which gives a final reward of d · iN, when the final stock level is iN. The demand for 
the items in each month is random. Let qn(x) be the probability that x units are ordered in 
the (n + 1)th month. It is assumed that the sequential demands are stochastically 
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independent. The inventory at stage n + 1 is thus given by in+1 = in + an− xn. This implies 
that the transition probability at stage n is given by 
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pn(i, a, j) is the probability that the inventory is equal to j, given the inventory one month 
ago is i and a units have been ordered in the (n + 1)th month. 
 
Example 2.2 (Inventory Control Problem without Backlogging) 
 
In this example, we assume that demands, which cannot be satisfied immediately, are lost. 
The difference in the mathematical formulation to the preceding example is as follows. 
The possible inventories at the beginning of the (n + 1)th month are given by Sn = {0, 1, ..., 
B}. If the demand in the (n + 1)th month is equal to xn, then the inventory at the beginning 
of the next month is given by in+1 = max (0, in + an − xn). Hence, the transition probability 
is given by 
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Example 2.3 (Replacement Problem) 
 
Replacement problems are another class of typical examples for Markov decision 
processes. The problem is as follows. A technical system (e.g. a machine) is in use over N 
years and its condition deteriorates randomly. The reward of the machine depends on its 
condition. Each year the manager has to decide whether or not the system should be 
replaced by a new one. It is assumed that a replacement occurs without time delay. 
Suppose the state in gives the condition of the system at the beginning of the (n+1)th year. 
Sn is a countable set with 0 ∈ Sn. If in = 0, then the system is new. At the beginning of the 
(n+1)th year, the manager has to decide upon the replacement. The action space can be 
defined by An = A = {0, 1} with the interpretation that if an = 1, the system is replaced by 
a new one and if an = 0, no replacement is undertaken. Obviously a replacement is always 
allowed, hence An(i) = A. Now suppose qn(i, j) gives the conditional probability of 
deterioration of the machine condition in the (n + 1)th year. The transition probability is 
thus defined by 
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The reward function is given by rn. At the end of the planning horizon N, the machine can 
be sold and a reward gN(iN), depending on the state iN is obtained. The aim of the 
management is to find a replacement policy in order to maximize the companies’ profit. 
A decision rule is a function fn: Sn → An with fn(i) ∈ An(i) for all i ∈ Sn. It chooses an 
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admissible action at stage n depending on the state of the system. A decision rule of this 
type is called Markovian, since the decision depends only on the current state and not on 
the whole history. Moreover, the actions are chosen with certainty. Because of this, the 
decision rule is called deterministic. There are cases where it is necessary to work with 
more general decision rules, which are history dependent and/or randomized. A 
randomized decision rule specifies in a given state a probability distribution on the set of 
admissible actions. Thus, a random experiment has to be carried out, in order to determine 
the action. There are certain problems where only randomized decision rules are optimal 
(see also Stochastic Games). In our exposition, we will restrict to deterministic and 
Markovian decision rules. 
 
A policy specifies the decision rules that have to be applied at the different stages. It is a 
sequence of decision rules and denoted by π = (f0, f1, ..., fN−1). If policy π = (f0, ..., fN−1) is 
given and if the system is in state in ∈ Sn, the controller has to select action fn(in) ∈ Dn(in) 
and the system moves to a new state in+1 with probability pn(in, fn(in), in+1). Formally, the 
evolution of the system under a given policy π is described by a sequence of random 
variables X0, X1, ..., XN which forms a (non-stationary) Markov chain with transition 
probabilities 
 
 1 1( , ) : ( , ( ), )

nf n n n n n n np i i p i f i i+ +=      (4) 
 
for n = 0, 1, ..., N − 1. 
 
A stochastic dynamic program is called stationary, if the state spaces, the action spaces, 
the set of admissible actions and the transition probabilities are independent of n and the 
reward functions rn and gN have the form 
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for some factor ß ∈ (0, ∞). In this case, we drop the subscript n and the problem is 
determined by the objects (S, A, p, r, g, ß). These models play an important role, when 
infinite horizon decision problems are considered. 
 
3. Finite Horizon Decision Problems 
 
In this section, we consider finite horizon Markov decision problems. We explain the 
important role of the Bellman equation and show how optimal policies can be computed 
with the backward induction algorithm. Under some assumptions, the monotonicity of 
optimal policies is studied. 
 
Given an initial state and a policy, a random stream of rewards is generated. As usual in 
the literature, we suppose that the objective is to maximize the expected sum of the 
rewards. More precisely, let i ∈ S0 be the initial state, π a given policy and N the planning 
horizon. X0, X1, ..., XN is the sequence of random states which are visited. The expected 
total reward over the planning horizon if policy π is used and the system starts in state i is 
given by 
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where iπE denotes the expectation with respect to the probability measure which is 
defined by policy π and initial state i. Of course, the aim is to find a policy which 
maximizes the expected reward. This maximal expected reward is given by 
 
 0( ) : sup ( ), .N NV i V i i Sπ

π
= ∈      (7) 

 
The function VN(i) is called value function or optimal value of the N-stage Markov 
decision process. A policy π∗ is called optimal if * ( ) ( )NNV i V iπ =  for all states i ∈ S0. If 
Sn and An are finite for every stage n, such an optimal policy obviously exists and can be 
found by enumeration. In general, such an optimal policy does not necessarily exist. In 
this case, one might be content with an ε-optimal policy. This is a policy that satisfies 
VNπ(i) ≥ VN(i) − ε for all states i ∈ S0. 
 
- 
- 
- 
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