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Summary 
 
From antiquity mathematics has been used to describe and understand nature. During 
the last centuries before Christ Babylonian mathematicians developed an accurate 
description of many celestial phenomena. Greek mathematicians developed a different 
account of the motion of the heavenly bodies and also applied mathematics to optics, 
statics, and music. These mathematical theories were perfected during the middle ages 
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and the renaissance. From 1600 many new areas of natural science were mathematized. 
Galilei and Newton developed the mathematical principles of mechanics, and around 
1800 new theories of electrostatics and heat conduction arose. Fluid mechanics and 
electromagnetism received mathematical treatments later in the 19th century, and the 
beginning of the 20th century saw the emergence of two revolutionary new 
mathematically sophisticated physical theories: the theory of relativity and quantum 
mechanics. 
 
Differential equations have been a particularly efficient tool in the mathematical 
description of nature and the history of these equations are intimately linked with the 
development of physics. The first ordinary differential equations and the first techniques 
for solving them arose at the same time as the differential calculus as a means to solve 
various problems mostly of a mechanical nature. Later in the 18th century continuum 
mechanics gave rise to the first partial differential equations. During the 19th century the 
wave equation, the Laplace equation, the heat equation, the Navier-Stokes equation, and 
Maxwell’s equations were set up and studied as a way to understand various aspects of 
nature. 
 
At first research on differential equations centered on finding their solutions in finite 
form, but from the 1820s more qualitative questions such as existence began to be 
investigated. 

1. Everything is Number 

From of old humans have attempted to get to grips with their own affairs and with 
nature surrounding them. This quest has given rise to mathematics. In the earliest 
written sources from Mesopotamia (Babylon) and Egypt (about 3000 BC.) mathematics 
was predominantly used for administrative and trade purposes, but also spatial relations 
and the heavenly phenomena were made the subject of numerical treatment. 
 
The subsequent Greek mathematical culture was from the outset linked to the 
description of nature. Legend has it that the first known Greek mathematician Thales 
acquired fame by predicting a solar eclipse in 585 BC and by measuring distances to 
ships at sea and the height of pyramids. The next known Greek mathematician 
Pythagoras (ca. 500 BC) developed a thoroughly mathematical philosophy of nature. 
His motto is said to have been: “Everything is number” by which he meant that 
everything in the world can be described by natural numbers and ratios between them. 
He was reportedly convinced about the universal powers of mathematics when he 
discovered that even esthetical properties such as musical harmonies can be captured by 
numbers. More precisely he discovered that if a taut string is divided in two, the tones 
produced by the two sections form a harmonious interval if the lengths of the two 
sections have a ratio to each other described by small natural numbers. For example if 
the lengths have a ratio equal to 1:2 the interval is an octave. The ratio 2:3 gives a fifth 
and 3:4 gives a fourth. Moreover multiplication of the ratios corresponds to addition of 
the intervals. For example a fifth and a quart give an octave corresponding to: 
2/3·3/4=1/2. 
 
There is an unbroken tradition from Pythagoras’s philosophy of mathematization to 
present day natural science. It goes via Plato, who according to legend would not let 
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anybody unversed in geometry enter his Academy, over Archimedes, Galilei, and 
Newton to the highly mathematized theories of modern science. However, many of the 
mathematical descriptions suggested by the Pythagoreans have later been rejected as 
mere number mysticism. For example the Pythagoreans argued that there must be 10 
heavenly bodies because 10 was a holy number, the sum of the numbers 1,2,3,4, the so-
called tetractys. 

2. Ancient Astronomy 

Soon after the Pythagoreans had formulated their mathematico-mystical world view, 
two very accurate descriptions of astronomical phenomena were developed, one in 
Babylon and one in Greece. Based on several thousand years of observations, the late-
Babylonian scribes invented numerical procedures for predicting phenomena such as the 
rising of the moon and the planets, and the occurrence of eclipses. The predictions were 
based on a set of numerical tables of linear zigzag functions, that we can now interpret 
as for example the monthly velocity of the sun (or the earth). 
 
Contrary to this arithmetical approach, the Greek astronomical theories were thoroughly 
geometrical. Aristarchus (c 310-230 BC) reportedly argued for a heliocentric universe 
but the most accurate antique theories were based on a geocentric model. Eudoxos, 
Apollonius, and Hipparchus contributed to the construction of the geocentric theory that 
found its final form in Ptolemy’s Almagest (c 150 AD). According to this theory the 
planets rotate on a circle (the epicycle E) whose centre in turn is carried around on 
another circle (the deferent D) centered at a point O which lies half way between the 
earth G and the so-called equant A around which the center of the epicycle moves 
uniformly. Ptolemy adjusted the parameters of this model (such as the radii of the 
circles and the angular velocities of the circular motions) using ancient Babylonian 
observations. The resulting description was so accurate that it was used until the 
renaissance. 

 

 
 

Figure 1. Ptolemaic planetary theory. 
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In order to deal with astronomical phenomena the Greeks developed trigonometry and 
spherical geometry. As the basic trigonometric function Hipparchus and Ptolemy chose 
to tabulate the cord (cord v) subtended by a given angle v in a circle of radius 60. When 
trigonometry was transferred to India during the middle ages the cords were replaced by 
the half chord of the double angle, i.e. the sine. Only with Euler (17th century) was the 
radius of the circle conveniently reduced to 1.  

 

 
 

Figure 2. The cord of an angle in a circle of arbitrary radius. 
 
The relation between Greek mathematics and astronomy exemplifies a general pattern: 
In the process often misleadingly called “application” of mathematics, it is rarely just a 
question of taking an already developed piece of mathematics and apply it to some other 
domain for example a natural phenomenon. In most cases the mathematics required for 
the application did not exist prior to the application, or was insufficiently developed. In 
these cases new mathematics emerged as a result of the “application”. In this way both 
mathematics and the area of application, such as the natural sciences, typically benefit 
from such an encounter. The rest of this article will show numerous examples of this 
cross fertilization. 

3. Optics and Statics 

In addition to astronomy (and music) two other natural sciences were mathematized in 
Greek antiquity: Optics and statics. The first mathematical text on optics was written by 
Euclid (c 300 BC), the author of the more famous Elements in which he collected much 
of the “elementary” mathematical knowledge of his time. Following the model of the 
Elements, Euclid tried to give an axiomatic treatment of vision assuming for example 
that the apparent size of an object is determined by the angle subtended by the visual 
cone from the eye. About a century later Diocles used the law of reflection (the equality 
of the angle of incidence and the angle of reflection) to establish that a parabolic mirror 
would reflect rays parallel to its axis to one point, its focus. Hero (c 10-70 AD) deduced 
the law of reflection from the assumption that light follows the shortest paths and 
Ptolemy studied the refraction of light on the interface between two media (air and 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

HISTORY OF MATHEMATICS – The Mathematization Of The Physical Sciences - Differential Equations Of Nature - Jesper 
Lützen 

©Encyclopedia Of Life Support Systems (EOLSS) 

water). However the law of refraction eluded him. It was discovered by the Islamic 
mathematician Ibn Sahl and independently by three early 17th century mathematicians: 
Harriot, Descartes and Snell, after whom it is often called. 
 
Statics, or the theory of equilibrium of bodies at rest, was made the subject of two very 
influential works by Archimedes (c 287- 212 BC). In the paper On the Equilibrium of 
Planes (in two parts or books) he set up a system of axioms from which he deduced the 
law of the lever and determined the centers of gravity of a triangle, a trapezium and a 
parabolic segment. In the paper On Floating Bodies (also in two parts) he proved that a 
liquid earth must be spherical, he derived Archimedes’s law, and he showed how a solid 
body shaped as e.g. the section of a circle or the section of a parabola will orient itself if 
it floats on water. 

4. The Middle Ages and the Renaissance 

During the Middle ages Arabic mathematicians refined the Greek applications of 
mathematics both to optics (e.g. Ibn al-Haytham (965-1040)) and to astronomy, and in 
the renaissance Nicolaus Copernicus (1473-1543) revolutionized cosmology by 
replacing Ptolemy’s geocentric universe with a heliocentric one. However, Copernicus 
continued the Ptolemaic tradition of describing the planetary orbits by circular motions. 
Thus from a mathematical point of view Johannes Kepler (1571-1630) was more 
innovative when he, on the basis of Tyco Brahe’s observations, suggested that planets 
describe ellipses with the sun in one focus and move such that the areas swept out by 
the radius vector from the sun to the planet are the same in equal times (1609). Kepler 
also broke old barriers when he began to speculate about the physical causes of the 
observed motions. All his predecessors had treated astronomy as a mathematical science 
that had noting to do with the physical theory of the motion of bodies near the earth. 

5. Mechanics of Motion 

Motion of earthly bodies had been discussed by the Greek philosopher Aristotle (384-
322 BC) and his theory received a mathematical treatment during the late medieval 
period in the so-called Merton school. But the great break through in the theory of 
motion (kinematics) came with Galileo Galilei (1564-1642). In his Discussion and 
mathematical demonstrations concerning two new sciences (1638) he argued that free 
fall is a constantly accelerated motion and he derived some of its properties. For 
example he showed that when a body falls from rest the distances traveled during two 
time intervals are to each other as the squares of those times. From this he also deduced 
that a body (for example a cannonball) that has a uniform horizontal motion and a 
constantly accelerated downward motion will follow a parabolic path. More important 
than any particular result was Galilei’s insistence that the book of nature is written in the 
language of mathematics. His program for studying nature was a continuation of 
Archimedes’s mathematical theory of statics, and struck a happy medium between 
Baconian empiricism and Cartesian rationalism. 

6. Newtonian Mechanics 

If Galilei was the father of kinematics, Isaac Newton (1642-1727) was the father of 
dynamics, i.e. the study of motion and the forces that cause it. Combining Galilei’s 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

HISTORY OF MATHEMATICS – The Mathematization Of The Physical Sciences - Differential Equations Of Nature - Jesper 
Lützen 

©Encyclopedia Of Life Support Systems (EOLSS) 

theory of motion of earthly bodies with Kepler’s laws for the motion of the heavenly 
bodies he created a unified mathematical approach to natural phenomena that remained 
the paradigm for the following centuries. He published his ideas in the Principia 
Mathematica Philosophia Naturalis (The mathematical Principles of Natural 
Philosophy) (1687) starting with his three celebrated laws of motion, the second of 
which stated that the change of motion is proportional to the impressed force (later 
reformulated as: force is equal to mass times acceleration). From these laws and 
Kepler’s laws he deduced that the force keeping a planet in its orbit was a central 
attractive force between the sun and the planet varying inversely as the square of the 
distance between them. He further argued that this force was a universal force 
(gravitation) that acted between all bodies, be they planets, the sun, the earth, the moon 
or an apple. 
 
Having established this universal law of gravitation Newton could then show that it 
gave an accurate account of all the heavenly motions, not only the approximate motions 
expressed by Kepler’s laws but also the small irregularities that Newton could explain 
as resulting from the mutual interactions between the planets. 
 
Newton presented his synthesis of the system of the world in a geometric language. But 
in his own analyses and his semi-public manuscripts he also made use of René 
Descartes’ analytical geometry (published 1637), in which geometric problems are 
studied using algebraic techniques, and of the fluxional calculus that he had developed 
in 1666. This latter theory dealt with variable quantities and their rate of change or 
velocities. If x  and y  denote quantities that vary with time (e.g. the distances between 
some heavenly bodies) then Newton denoted their rate of change or their velocities by 
x and y . He called these the fluxions of the fluents x  and y . He formulated two main 
problems for the study of fluxions: 1. Given an equation involving two fluents, find the 
ratio between their fluxions, and conversely: 2. Given an equation involving two fluents 
and their fluxions, find the equation between the fluents. The former problem 
corresponds to differentiation and the latter to what we would today call the solution of 
a differential equation. Newton used the fluxional calculus to solve many problems 
related to curves considered as trajectories of a moving point. 

7. Early Differential Equations 

Ten years after Newton had developed the fluxional calculus the German diplomat, 
philosopher and mathematician Gottfried Wilhelm Leibniz (1646-1716) independently 
invented his differential calculus. If x  and y  are two variable quantities for example 
the x  and y  coordinates of a point on a plane curve he let dx  and dy  denote the 
infinitely small increments or differentials by which they vary. The differential calculus 
consisted of rules for calculating with such differentials. It was quickly taken up by the 
brothers Jacob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748) and other 
continental mathematicians. Just as Newton’s fluxional calculus, the differential 
calculus was from the beginning used to solve problems leading to differential 
equations. 
 
In the language of the 17th and 18th centuries a differential equation is an equation 
involving differentials e.g. dx  and dy  (and possibly higher order differentials), and 
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solving (or integrating) it means to determine an equation between the variables 
themselves. In the later terminology of Lagrange and Cauchy, that we still use to day, a 
differential equation is an equation involving an unknown function f  and some of its 
derivatives ,  ,f f′ ′′ …and solving (or integrating) it means to determine a function (or all 
the functions) that substituted for f will make the equation hold true. The order of a 
differential equation is the maximal number of times the unknown function is 
differentiated. 
 
Most of the early examples of differential equations had their origin in mechanical 
problems. The earliest example was the isochrone problem that asks for a curve along 
which a body descending under the influence of gravity will reach the bottom point in 
the same amount of time from whichever point on the curve the descent begins. 
Christiaan Huygens (1624-1695) had already in 1659 shown that the curve is a cycloid, 
i.e. the path of a point on a wheel rolling on a straight line without slipping. He had used 
this insight in his construction of the first pendulum clock. In 1690 Jacob Bernoulli 
found the same result by setting up a differential equation for the isochrone and solving 
it. The following year and using similar techniques, his brother and other 
mathematicians determined the catenary, i.e. the curve assumed by a flexible inelastic 
hanging cord or chain. He showed that the curve satisfies the differential equation 

/ /dy dx s a=  where s  denotes the curve-length along the curve. Through algebraic 
manipulations of this equation and one integration he transformed it into the differential 
equation 
 

2 2

adydx
y a

=
−

, 

 
which he solved by a geometric construction. Today we recognize the solution as the 
graph of the hyperbolic cosine function. 

8. The Brachistochrone 

Other mechanical problems solved using differential equations during the late 17th and 
early 18th centuries include the shape of a square sail under the influence of the wind 
and the shape of such a sail filled with water.  But the most far reaching of these 
problems was the brachistochrone problem posed by Johann Bernoulli in 1696 and 
solved the following year by himself, his brother, Newton and Leibniz. Given two 
points in a plane; the problem asks for the curve between them such that a body sliding 
along the curve under the influence of gravity will travel in the shortest time from the 
higher point to the lower one. 
 
Johan Bernoulli’s solution combined optics and mechanics. Indeed, Pierre de Fermat 
(1601-1665) had deduced Snell’s law of refraction from the assumption that light travels 
along the quickest path and has lower speed in denser materials. Moreover Galilei had 
shown that a body falling from rest will have a speed proportional to x  where x  is the 
vertical distance the body has fallen, irrespective of the path along which it has reached 
the position. Thus Bernoulli could consider the sliding body as a light particle moving 
in a horizontally layered medium with the velocity of light increasing downward as x . 
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The light ray would then follow the brachistochrone. Expressing the sines in Snell’s law 
in terms of the differentials dx  and dy  led him to the differential equation 
 

xdy dx
a x

=
−

. 

 
This equation has its variables separated and can therefore be solved simply by taking 
integrals on both sides. However, Bernoulli immediately recognized it as the differential 
equation of the cycloid and had thereby established that the brachistochrone is also a 
cycloid. 
 
Jacob Bernoulli’s solution was less elegant but went deeper. He expressed the time used 
by the body to slide along a given curve ( )y x  as an integral involving ( )y x  and its 
differential, and succeeded in determining the curve that minimizes this integral. This 
can be seen as the beginning of the calculus of variations in which the aim is to 
determine that function among a given set of admissible functions which minimizes a 
given integral involving the function and its derivatives (or more generally a functional, 
i.e. a function of functions). Variational problems later became very important in 
mechanics and other areas of physics and other sciences. 
 
- 
- 
- 
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