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Summary 
 
In the recent years modeling approaches in Developmental Biology are driving research 
in this field at an accelerated pace. On the one hand, this has been possible by the 
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development of experimental techniques that allow the quantification of the molecular 
and morphogenetic processes that underlie embryo formation. On the other hand, 
multidisciplinary approaches that combine Mathematics, Physics, and Biology have 
contributed with novel viewpoints. Herein we review some advances in modeling 
approaches toward the understanding of embryo development. While a complete 
coverage of all the developments in this field is beyond the scope of this contribution, 
we have been as comprehensive as possible in reviewing particular problems that have 
played a key role to understand fundamental concepts in embryo development from the 
modeling point of view. The review is divided in five sections that cover different 
spatiotemporal scales and techniques. In addition we sketch some mathematical 
formulations that are useful to tackle this sort of problems. The result is an overview 
that provides a general picture of these processes and approaches that will hopefully 
help the non-experts to be introduced in this fascinating topic while will serve as a 
reference to the experts. 
 
1. Introduction 
 
The word embryo refers to any developing organism between fertilization and birth and 
Developmental Biology is the branch of Science that studies the processes that drive 
such phenomenon. Thus, in opposition to most branches in Biology that focus on adult 
structures and functions (being), the questions posed by Developmental Biology try to 
understand the becoming. E.g., a geneticist may study how genes of a particular cell 
type are transmitted over generations, a physiologist may ask about the function of 
those genes, a molecular biologist about their interactions at the molecular level, yet a 
developmental biologist will ask: how come that those genes were expressed in that 
particular cell type? Nonetheless, since embryo development is an extremely complex 
process, a broad viewpoint is required and an overlap between different approaches 
naturally arises. 
 
As Scott F. Gilbert mentions in his classical book “Developmental Biology”, this 
discipline has been described as “the last refuge of the mathematically incompetent 
scientist”. This review will show that this definition not longer applies. Mathematical 
and physical principles are now applied to understand embryonic development and, 
when possible, to derive laws. In fact, this is not a recent tendency. W.K. Brooks (1848-
1908) and D´Arcy Thomson (1860-1948) were pioneers in the field of Mathematical 
Biology applied to the growth of organisms. A. Turing (1912-1954) further contributed 
to these ideas when proposing a simple mechanism by means of which the interactions 
(reactions) and diffusion of chemical species lead to a patterning process out of a 
random initial distribution of chemicals. This mechanism was a major breakthrough for 
the mathematical formulation of Developmental Biology since embryonic development 
relies on the temporal and spatial induction of different cell fates and in many instances, 
cell differentiation is related to the existence of a spatiotemporal pattern of gene 
expression. It is also worth mentioning C.H. Waddington's conceptual proposal on the 
epigenetic landscape for the developmental choices cells make. This proposal was 
afterwards formalized through the theory of dynamical systems being an inspiration for 
subsequent studies on cell fate choices. 
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Nowadays mathematical approaches are common when studying embryonic 
development and modeling efforts are pursued to characterize and understand how 
patterns of gene expression arise and tissue dynamics develops. Herein, we will use the 
term pattern for any spatial or temporal heterogeneous distribution of gene expression. 
Importantly, models for pattern formation can be used as conceptual tools to pinpoint 
and understand key elements of the process and to make predictions. Thus, models 
should not be used to only reproduce existing data and confirm mechanisms but also to 
profit for their predictive capabilities and feedback to perform new experiments. In this 
review we provide an overview of different crucial aspects of modeling approaches in 
developmental processes. Our objectives are twofold. On the one hand, we go over past 
and recent research in developmental pattern formation mechanisms and models in 
order to present a general idea of the current knowledge. Thus, we include different 
viewpoints: mathematical formalisms, experimental observations, and the mechanical 
and topological characterization of pattern formation. On the other hand, we would like 
also to promote further research by identifying open problems of this field. 
 
This review is divided in six sections. Right after this first section of introduction, the 
second section presents the basic mechanisms that promote spatial interactions (a 
fundamental component in pattern formation) and reviews mechanisms for molecular 
pattern generation. The third section is devoted to gradients as a primary driving force 
in developmental patterning. Gradients are used to provide positional information to 
cells within a primordium. In that section we review how gradients are formed and 
interpreted, and their precision is characterized. Section 4 deals with issues in regards of 
the segmentation and compartmentalization processes in development. We also 
introduce a tool for deriving mathematical models from network graphical 
representations using as an example the formation of organizing boundaries. Section 5 
focuses on mechanical interactions in development. There we show that energetic and 
mechanistic considerations are key in some developmental processes and review 
modeling techniques that use this approach. In addition we reveal how formalisms from 
foam theory have been used to characterize tissue topologies. Finally, the review 
concludes with a summary of the main ideas introduced herein. All in all, we show that 
modeling in Developmental Biology is a promising field of research that has shed light 
on, and will surely elucidate, fundamental open problems in embryo development. 
 
2. Mechanisms of Pattern Formation in Development 
 
Cell fate specification relies on differential gene expression. Cells read and interpret 
protein activities driven by gene expression, triggering signals for differentiation. In 
order to understand how cells become differentiated into an organized and reliable 
structure we need to answer how the molecular patterns that trigger differentiation 
signals are generated as well as how cells read and interpret them. While this section is 
devoted to mechanisms for molecular pattern formation, pattern interpretation is 
discussed in Section 3 in the context of morphogen gradients and positional 
information. Note that molecular patterns can be considered as pre-patterns that indicate 
which fates cells will acquire and in which spatial locations. This has been the 
prevailing view of pattern formation in development and will be the basis for this 
section, while discussions on the assumptions of this view can be found at the end of 
this section as well as in Section 3. Since molecular activity is required for 
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differentiation, the mechanisms discussed in this section should be understood as 
mechanisms for gene and protein expression which yield molecular activity. In Section 
4, the differences between gene expression and activity will be discussed with a specific 
example.  
 
There is a wide variety of molecular patterns that drive organized embryonic structures. 
These patterns range from spatial stationary heterogeneous distributions given by a 
single molecule that forms a gradient (i.e. its concentration decays over space), 
dynamical periodic waves of gene expression of different interacting genes sweeping a 
tissue (e.g. the cyclic genes during somitogenesis in vertebrates), to periodic and 
branching patterns, to mention a few. In this section, we summarize different 
mechanisms for the formation of stationary molecular patterns. We review two kinds of 
patterns that have received special attention in the last decades: non-periodic patterns 
formed by a single gradient and periodic patterns constituted by one or several 
molecular components.  
 
From a conceptual point of view, two different ways for the formation of patterns can 
be envisaged. On the one hand, patterns can be created from an existing asymmetry or 
polarity (e.g. from another heterogeneous profile). On the other hand, patterns can be 
created de novo when there is no previous consistent asymmetry. In this section we 
focus mainly on de novo pattern formation, while Sections 3 and 4 are devoted to 
specific examples of patterns arising from a previously settled polar cue.  
 
2.1. Spatial Coupling for Pattern Formation 
 
Independently of the presence or absence of initial polar cues, pattern formation always 
requires spatial coupling. This coupling enables the transfer of information over space 
to create an organized structure such as a pattern. Without spatial coupling, the 
dynamics at each spatial location is independent of the dynamics in any other location, 
impeding the construction of a spatial non-random structure.  
 
Different processes mediate spatial coupling. One of them is the transport of a 
molecule. This transport can be non-directed (i.e. towards all directions) or polar (i.e. 
towards a specific direction). Diffusion is a paradigmatic example of a non-directed 
transport. In 1952 Alan Turing proposed and demonstrated from theoretical grounds 
that diffusion of two molecules can create patterns de novo which could be potentially 
relevant for morphogenesis. Nobel Laureate Francis Crick evaluated in 1970 whether 
diffusion could be a long-range transport mechanism yielding gradients along embryos. 
He showed that diffusion could transport proteins on realistic time scales of a few hours 
in tissues about 30-70 cell diameters wide. Since then, diffusion has been considered the 
major transport mechanism taking place during embryonic pattern formation.  
 
Diffusion arises from the random motion of molecules in all directions. As a result, 
diffusion per se tends to homogenize the concentration of the diffusing molecule over 
space. In addition, due to the inherent randomness of diffusion which prevents 
persistent straight motions, it is possible to prove that the root mean square of the 
displacement of diffusing molecules increases with time as its square root. Hence, 
diffusion enables to reach very short distances rapidly, while it involves long time 
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intervals to achieve large distances, when compared to ballistic motion. At present, 
diffusion is commonly named restricted or effective diffusion. These terms emphasize 
that diffusion in embryos is not occurring just in an aqueous medium, but in crowded 
environments with non-uniform matrix geometries and molecular distributions that 
interact with the diffusing molecule and slow down its dynamics.  
 
There are other non-directed transport mechanisms occurring in cells. This is the case of 
transport through cells by cycles of endocytosis and exocytosis (named transcytosis; see 
Section 3 for its relevance in morphogen gradients). Since this transport involves 
vesicle trafficking and recycling, its dynamics are expected to be slower than those of 
diffusion alone in an aqueous medium. Note that this transport mechanism can become 
potentially directed if, for instance, the polarity of cells influences the vesicular 
transport or ligand externalization. Being a new transport process unveiled in the last 
decade, it lacked of a mathematical description that could evaluate its main features. 
Recently, a first mathematical description of this transport has been provided by 
Bollenbach and colleagues. This description shows that non-directed transcytosis 
coupled to extracellular diffusion of the ligand can be described for large length scales 
and small ligand concentrations as an effective passive diffusion. 
 
There are several examples of directed transport mechanisms acting during embryonic 
development. The transport of a molecule mediated by a fluid flow (advection) is 
directed in the direction of the fluid flow, while the transport of charged molecules is 
also directional and its polarity is set up by voltage differences. In plants, the hormone 
auxin, a key hormone for plant development, is transported polarly. Albeit it is still 
unknown how this polarity of auxin flow is controlled, the asymmetric localization of 
protein carriers that enable active auxin efflux and influx transport from cells is crucial. 
Pattern formation driven by such hormonal polar transport is reviewed in the following 
subsections. 
 
Importantly, spatial coupling can also be driven by other means than the transport of 
physical entities. This is the case of the binding of receptor and ligand proteins 
anchored in different cell membranes. In this case, when the ligand and the receptor 
bind, a signal is triggered within the cell harboring the receptor. Hence, information 
from the cell that has the ligand (signaling cell) is transferred to the cell that has the 
receptor (target cell), setting a spatial coupling. This kind of spatial interaction can also 
drive molecular patterns as shown below. 
 
More than one mechanism of spatial coupling can be acting at the same time during 
pattern formation. Mathematical modeling becomes extremely useful in such cases 
since it can evaluate the contribution of each kind of coupling to the pattern formation 
process. An exemplifying case can be found when one of the spatial couplings favors 
homogenization (no pattern), while another one drives patterning. In this case, 
mathematical modeling can pinpoint under which circumstances (range of parameter 
values) a pattern is expected to arise. Finally, note that we have only mentioned spatial 
coupling mechanisms which involve molecular elements. However, as described in 
section 5, spatial coupling can also occur between cells through physical/mechanical 
interactions. 
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2.2. Patterns Formed from Polar Cues 
 
One of the paradigmatic examples of pattern formation though polar cues is gradient 
formation. A spatial gradient of a molecule corresponds to a non-periodic spatial 
heterogeneous molecular distribution that decays over space. Molecular spatial 
gradients have been unveiled in many different contexts of development and in many 
different species, ranging from vertebrates to plants and have been shown to control 
morphogenesis. In this section we briefly sketch which elements are required to create 
gradients in order to emphasize the differences with de novo pattern formation 
mechanisms, which are reviewed in the next subsection. Section 3 extensively studies 
gradient formation and its implications on morphogenesis.  
 
Spatial gradients can settle down within the extracellular space or inside cells and need 
to span large enough distances to be relevant for morphogenesis. One of the most 
studied molecular gradients in Developmental Biology is the graded profile the 
transcription factor Bicoid forms within the syncytium of the fruit fly, Drosophila 
melanogaster, along the antero-posterior axis. This gradient poses the minimal elements 
required to create a non-periodic graded distribution. On the one hand, an initial polarity 
is needed. On the other hand, transport of the molecule over long distances must occur. 
In the case of Bicoid the polarity is given by transcription, which occurs only at the 
anterior pole of the embryo. While there is controversy of how Bicoid is transported 
(see section 3), diffusion across the embryonic cytoplasm of the syncytium is the 
common transport mechanism being proposed. These two factors (a polar transcription 
and non-directed transport) can drive Bicoid gradient formation. However, if there are 
no additional processes being involved, the Bicoid gradient is expected to change 
significantly over time, since the concentration of the molecule is expected to increase 
constantly. This is not what is observed experimentally. Indeed Bicoid gradient has 
been reported to exhibit an exponential profile which is stationary (or nearly stationary). 
Therefore, additional processes are participating to shape this gradient. Albeit a 
thorough discussion of this gradient is made in section 3 we indicate herein that 
degradation of the Bicoid protein across the space accounts for this exponential gradient 
profile. Therefore, albeit a polar cue and long-range transport are the minimal elements 
required to create a gradient, additional processes can also participate which also shape 
the gradient profile and control its properties. A mathematical description of the 
dynamics of gradient formation, as exemplified in section 3, can evaluate how each 
process shapes the gradient, which alterations on the gradient profile (at transient and 
stationary times) are expected to occur when a perturbation is applied, and which 
properties does the gradient profile exhibit. Conversely, by analyzing how the gradient 
is modified when changes or perturbations are applied, we can infer how it is created.  
 
Most of the gradients reported during embryonic development are driven by a polar cue 
arising from local inhomogeneous sources of protein transcription or protein translation 
(e.g. transcription/ translation is restricted to a small spatial region). However, the 
polarity required for gradient formation can arise also from directed transport. This is 
the case of the spatial gradient of the hormone auxin in the root apex of the plant 
Arabidopsis thaliana. Plants develop and form new structures throughout their lives 
through the dividing activity of meristems. In Arabidopsis, auxin flows from apical 
regions into the root through the vascular tissue and returns to the apical regions 
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through the epidermis. A maximum of auxin has been found in a domain (columella 
initial cells) at the root apex. However, no local, polar biosynthesis sources of auxin are 
known within the root. Importantly, auxin transport involves a non-directed motion, 
corresponding to diffusion, and a directed active transport mediated by protein carriers 
at the cell membranes. While auxin diffuses across the extracellular space and can 
passively enter into cells, diffusing within them as well, the direction of its flow is 
mainly controlled by the polar localization of protein carriers that facilitate efflux (and 
influx) transport from cells. Through mathematical and computational analyses of the 
auxin flow in the root Grieneisen and coworkers have unveiled that efflux polar 
transport can drive this gradient within the root architecture. Hence, in this case, the 
polar transport of auxin provides the polar cue and, together with diffusion, the spatial 
coupling required for gradient formation. 
 
Polar cues can underlie other kinds of patterns, which do not have just a gradient 
profile. This is the case of periodic patterns that are created within an already patterned 
tissue. In this case, the primary pattern acts as a source of polarity. As expected, spatial 
coupling is required also to drive these patterns. Invertebrate embryonic segmentation 
exemplifies this scenario since it proceeds by the progressive subdivision of the 
embryo, relying at each step on polar cues given by previously settled down patterns. 
Sections 3 and 4 review examples of this kind of patterns.  
 
- 
- 
- 
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