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Summary 

Faced to the complexity of the combinatory problem solving, different heuristic 
approaches which are based on physics and biology concepts, have been developed in 
the end of the last century. More particularly, the NP-complete problems and the 
archetypes of computationally intractable problems which are the Satisfiability Problem 
(SAT), the Travelling Salesman Problem (TSP) or the Quadratic Assignment Problem 
(QAP), need a calculation time which exponentially increases according to the problem 
size.  
 
This chapter will particularly present the principle of one of these heuristic tools, the 
Simulated Annealing (SA) algorithm which has been particularly successful in solving 
various combinatorial decision and optimization problems.  
 
Firstly, the thermal annealing process will be explained in the objective to show the 
analogies between this sequential thermodynamic transformation of the crystalline 
system states and the SA algorithm. Then, the order and disorder notions at the 
molecular level and the dynamics of the state changes and the systems stability, will be 
defined. These aspects correspond to the local optimality in the combinatory problems 
which is similar to attraction basins in thermodynamic systems. Contrarily to the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III – Simulated  Annealing: From Statistical Thermodynamics to Combinatory 
Problems Solving - D. Thiel 
 

©Encyclopedia of Life Support Systems (EOLSS) 

analytical methods which stop their research if a local optimum is attempt, the SA 
algorithm is able to go through metastable states and to jump towards other attraction 
basins. This discrete state change is activated by a random law which corresponds to the 
Boltzmann thermodynamic equation. From this introduction based on statistical physics 
and thermodynamics, the detailed principle and the conditions of convergence of the SA 
algorithm, will be described. Finally, some applications of SA will demonstrate the 
performance of this tool. 
 
1. Complexities of Problems and Algorithms 
 
Some combinatory problems can not be solved optimally (despite centuries of work of 
them) because the computer time to find the best solutions, increases exponentially with 
the size of these problems. The archetype of computationally intractable problems is the 
Satisfiability Problem or SAT. It is a decision problem which has a yes/no answer. For 
example, in a restaurant, a man gives his meal preferences in the following terms: he 
likes salads or meat. But he also likes salads or dessert, and finally, he hesitates between 
a meal without meat or a meal without desserts. The sole solution of this problem is that 
this man will only choose salads for his meal. If the propositions are salads or meat, 
salads or a meal without meat, a meal without salads or with meat, it is not possible to 
find a satisfying assignment.  
 
To identify the complexity of combinatory problems, it is necessary to verify if the time 
to solve their, is a polynomial time or not (a polynomial P is an arithmetic expression 
composed by summing multiples of powers of some variables, the highest power 
qualifies the degree of the polynomial). Presently, there is no algorithm known that is 
guaranteed to solve any problem like SAT in a time polynomial in the number of 
variables. The remarkable discovery of Cook in the early 70s, was that many complex 
problems such as scheduling, can be polynomially reduced into a SAT problem. For the 
scheduling problems for instance, in this approach, the task of finding a plan in a given 
domain, is converted to the task of finding a model for a certain satisfiability problem. 
In practice, the SAT problem is fundamental in solving many application problems and 
the methods to solve this type of problems, play a central role in the development of 
efficient computing systems. There also has been a strong connection between the 
theory, the algorithms, and the applications of the SAT problem. 
 
On these decision problems can be added other types of combinatory problems like 
search problems. For example, to solve a scheduling problem, it is not sufficient to 
prove the existence of a solution, it also needs to construct them. An optimization 
problem can be solved like a search problem by associating to a solution a value which 
consists in minimizing or maximizing an objective function. A typical and well-known 
example of archetypal problem, is the Travelling Salesman Problem (TSP) where a 
salesman must visit n cities in the shortest possible time. Mathematically, the TSP 
consists in finding the shortest Hamiltonian cycle in a graph with n vertices and with 
edge weights between the vertices, equal to the distances between the cities (see in 
Figure 1 three different elementary circuits C1, C2, C3 among the great number of 
circuits possibilities. For example, if the number of cities is equal to ten, the number of 
cycles is equal to (1×2×3×4× … ×9×10) = 3,628,800 possibilities. This problem has a 
variety of solutions of varying complexity and efficiency. The running time to find the 
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best solution is exponential to the number of cities n. 
 

 
 

Figure 1. Some elementary circuits for a Traveling Salesman Problem. 
 
To perceive the limits of this type of problems, it is necessary to evaluate the number of 
operations of the algorithms which can solve their, according to the data size. This 
corresponds to classify the problem according to the necessary time to solve it in 
polynomial time. Of course, if it is possible to demonstrate that the problem is 
polynomial, then it will be solved "classically" and it will not be useful to use heuristic 
techniques (in Greek, heuristikein means searching). By a more trivial approach, these 
problems have to be firstly presented in two classes of complexity, the P problems and 
the E problems. The P problems are "good problems" in the sense that the calculation of 
their solutions, is feasible in a reasonable time (i.e. polynomial problems). The E 
problems are exponential problems (their complexity is like k power n, where k is a 
constant and n the data size). But a lot of problems are excluded of this previous 
classification, there are NP-hard problems (the more "hardest" of this type of problems 
is called a NP-complete problem). By an intuitive point of view, NP-complete problems 
can be interpreted as a search of solutions in a tree. This tree contains all the possible 
solutions and each branch represents one possible solution. The height of such a tree, is 
polynomial but the number of branches is exponential, each node corresponds to a 
choice of a value of a variable. According to the three TSP circuits showed in the 
previous Figure 1, it is easy to recognize in the tree presented in the Figure 2, the 
beginning of the circuits C1, C2 and C3.  
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Figure 2. An example of a TSP solution tree. 

The bottom of this tree corresponds to the initial solution s0 and its "economic" value 
v(s0). The tree starts with this solution and then, in this example, has to choose to go 
through the arrow (1,2) or not. If the arrow (1,2) is taken, the next solution s1 
corresponding on a the beginning of the path (1,2), gives the "economic" value v(s1). 
New values are calculated and on each vertex i, the algorithm chooses the best value 
v(si). The space of the possible solutions (s0, s1, s2,…) with their respective values 
(v(s0), v(s1), v(s2),…) exponentially increases according to the depth of the tree. For 
example, the sequences of the arrows of the circuit C1 is the following: (1,2) means 
from city 1 to city 2, and after that (3,4); (2,3) etc. A branch noted ji,  blocks the way to 
the arrow (i, j). If the tree is binary and the depth is equal to n, then the number of 
branches is equal to 2n. The only way to obtain an acceptable solution is to go all over 
the tree until finding a correct solution. In the less good case, this procedure can need to 
go all over the tree by testing all the different branches, the problem is therefore 
exponential. 
 
The complexity of these different algorithms has to be evaluated according to the 
computer type and the chosen computer language. To do that, the Turing machine is 
used as a mathematical model which is universally known as representing the computer 
behavior. The principle of this machine is quite simple. It is composed by three parts: an 
infinitely long "tape" with symbols on which the instructions and the data are stored, a 
read/write head which reads or modifies the data of the tape and can be moved along 
that, and a finite Control Unit that defines how to operate the head and the tape. The 
tape is composed by integer numbers included into − infinite and + infinite, or by blanks 
(if no data). At each step, the machine reads the number at the current position on the 
tape. For each combination of current state and number read, a program specifies the 
new state and either a symbol to write to the tape or a direction to move the pointer (left 
or right) or to halt. If the machine starts at time t = 0, the first state s0 corresponds to the 
position of the read/write head. If the word w is represented by n binary digits (w1, w2, 
w3,…, wn) for example the word (0, 1, 1, …,0), the head at time t = 0 is pointed on 0 
(see Figure 3). The tested program P (cf. the algorithm included in the Control Unit) 
corresponds to a transition function which defines the rules depending on each state and 
on the value of the digit faced to the position of the head. For example, on state s0, if the 
value of the digit is equal to 0, then go one place to the left and remain in the same state 
s0. If it is equal to 1, then go one place to the right and move to the next state s1. If it is 
equal to b (blank), then stop the program (cf. the algorithm) and this is the final state sf. 
These different rules are summarized in the Table 1. 
 

 Digit Value = 0 Digit Value = 1 Blank 
State s0 go to s0, move left go to s1, move right go to s2, move right 

State s1 go to s1, move left go to s2, move right go to s2, move left 

State s2 go to sf, STOP go to sf, STOP go to s2, move left 
 

Table 1. An example of a transition function. 
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Figure 3. The Turing Machine. 
 
If the Turing machine attempts the final state sf in a finite time from an initial state s0, it 
is possible to define the duration of the algorithm. This time is based on the number of 
necessary iterations the algorithm needs to move from s0 to sf (if the Turing machine 
does not attempt the final state sf, the duration is infinite). In the previous example, the 
program P needs a time corresponding to three iterations to converge towards the final 
desired state (see Figure 3). Anything that can be solved by a Turing machine program, 
can be programmed in one of the thousand different models of computation. This 
machine is therefore used for computability theory proofs (Siegelmann reported in 
Science of 28 April 1995 that she has found a mathematically rigorous class of 
machines, based on ideas from chaos theory and neural networks, that are more 
powerful than Turing Machines). 
 
This « measure » of complexity can imply that a given problem is presently of the 
complexity of the less complex known algorithm which is able to solve it. But if the less 
complex algorithm needs more calculation time that an usually ones, this last conclusion 
is to be moderated. To solve NP-complete problems, a non-deterministic algorithm can 
be compared with an algorithm realized by a non-deterministic Turing Machine. The 
difference is, when a deterministic algorithm produces only one calculation, a non-
deterministic algorithm produces a set of calculations by introducing the choice notion 
(a set of solutions is accessible at each state of the algorithm). 
 
The next section presents the principle of Global Search Methods for solving NP-
complete optimization problems. 
 
2. Introduction to Global Search Methods 
 
In combinatory optimization problems solving, some iterative methods find solutions 
which are « sub-optimal » because there does not escape from certain optimums called 
local optimums and can not reach states where further improvements can be found. The 
Figure 4 gives an example of a three-dimensional space where the algorithm searches 
the lowest point of the « landscape » f(x, y) which is generated by the solutions si 
defined according to different possible values of x and y. For example, the function 
f(x,y) could represent the evolution of a cost function according to two variables x and y, 
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si are possible couples of solutions (xi,yi) which implies a corresponding cost f(xi,yi). As 
it is possible to see in this figure, the algorithm stops its trajectory (s0, s1, s2,…,sp) in the 
lowest point sp of one "valley" which is not the more depth of the global landscape. 
Therefore, the algorithm does not find the minimum value smin of the objective function 
f(x, y) of the optimization problem and is not able to continue its trajectory to the point 
sp+1. 
 

 
 

Figure 4. Global Search Methods (the algorithm stops its trajectory(S0,S1,S2,……,Sp)in 
the lowest point Sp of one “Valley” which is not the more depth of the global landscape. 
 
Figure 4 gives an example of a three-dimensional space where the algorithm searches 
the lowest point of the « landscape » f(x, y). 

 
Now, this procedure will be in detail, developed. An initial point is given (i.e. an initial 
solution s0), for example in the TSP, an « usual » round or circuit which was empirically 
of randomly generated. This initial solution corresponds to a succession of arrows 
which are evaluated by an initial cost defined according to the objective function f (for 
example, the cost can be based on the distance or the time of the travel and is equal to 
the valuations sum of the arrows of the circuit). For the solution s0, the cost is defined 
by f(s0). To choose a new circuit s1 which is more « economic », such as f(s1) is lower 
than f(s0), an heuristic should be applied like for instance, switching two cities of the 
circuit (instead of the path …→ city i → city j → city k →…, do …→ city i → city k → 
city j →…). If the solution s1 is more interesting as s0, s1 will be accepted and s0 on 
while the new solutions are such as f(si) is lower than f(si-1), for i greater than zero. The 
problem of this type of algorithm is, if after (p+1) iterations with p greater than zero, 
f(sp+1) gets greater than f(sp), then the algorithm will stop in a local minimum. In the 
Figure 4, some solutions sj (with sj included in the interval [s0, sp]) give better results 
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f(sj) as f(sp) which corresponds to the best solutions sp where the algorithm has 
previously stopped. But this type of algorithm will not be able to select their. Only a 
modification of the initial conditions (i.e. of the initial circuit) is possible to give new 
chances for the algorithm to scrutinize other "valleys". An problem is that the f function 
« profile » is a priori unknown, except in enumerating all the solutions but it is quite 
always impossible because of the extremely long computer time. For these different 
reasons, global optimization algorithms are used. Their objectives are to find a solution 
in the solution set for which the objective function obtains its smallest value, the global 
minimum. So, these algorithms avoid to remain only in one « valley » (or attraction 
basin which corresponds to a metastable state, in physical sense) and can find a final 
state which are more stable. Nevertheless, when the number of variables gets larger, the 
global optimization algorithms are to be more efficient. Simulated Annealing can solve 
global optimization problems with several hundred variables. However, this is a small 
number of variables when one considers that, in monocriteria operational research, 
integer programming can tackle problems with thousands of variables, and linear 
programming is able to solve problems with millions of variables (but these last 
algorithms can not solved NP-complete problems).  
 
To summarize, global optimization is the task of finding the absolutely best set of 
admissible conditions to achieve a given objective, formulated in mathematical terms. 
Now, before developing the SA principles, it is useful to explain the scientific 
foundations of this global search algorithm by referring to statistical physics and 
thermodynamics. 
 
- 
- 
- 
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