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Summary 
 
The natural way to find the limits of the accuracy in measurements is based on the 
probability theory and the mathematical statistics. In this general review distribution-
free methods and non-parametric methods, point and interval estimations of the 
unknown parameters are discussed. The connection between maximum likelihood 
method and least squares method is shown. The special sections are devoted to robust 
approach and to resolution of digital signals. Cramér-Rao lower-bound for accuracy is 
demonstrated. 
 
1. Introduction 
 
The word ACCURACY (from Lat. accuratus – made with taking care of) has several 
definitions: 
- the freedom from errors; 
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- property of a human statement to be close to truth; 
- degree of conformity of a measurement to a true value, i.e. to a standard or to a model; 
which are reflected by its synonyms: exactness, correctness, precision. Staying more in 
the EOLSS context we would rather consider the case of measurements distinguishing 
between direct and indirect measurements. Direct measurements are accomplished 
either by counting the number of some events within a given time interval (as for 
instance, for Geiger counter), or by comparing a measured object with a standard, i.e. its 
accuracy can be evaluated quantitatively in units of a minimal scale factor. However in 
contemporary sciences and technologies direct measurements are inherent in the lowest 
level of a procedure of more sophisticated indirect measuring of an observable 
phenomenon. Such phenomena are described, as a rule, by theoretical models with 
given quantitative characteristics of parameters. Thus indirect measurements suppose to 
be a subject of calculations that leads to the problem of the accuracy estimation from the 
set of measured values. This problem is caused not only by the complexity of a 
functional dependence connecting a chosen model, its parameters and measurements, 
but mainly, due to errors of the latter. These errors are inherent in any measurements, 
direct or indirect, regardless of the thoroughness, with which the measurements have 
been done. The accuracy of parameters in question is inversely proportional to those 
errors. Therefore they have to be classified according to their sources and analyzed in 
order to be decreased as much as possible. 
 
There are several types of errors distinguished depending either on their sources – such 
as instrumental and model errors, or on their statistical behaviour – such as bias and 
random errors. 
 
Instrumental errors appear due to inevitable distortions introduced into the 
measurements by various maladjustments of a measuring device while its construction 
or by misalignments of its parts. Such errors can be observed in the process of a special 
calibration procedure, when an especially designed standard object is measured. Results 
of these calibration measurements are then handled to be compared with well known 
features of the standard. Such calibration data handling has twofold goals: (1) to 
evaluate and approximate distortions of the measuring device in order to compensate 
them mathematically; (2) to determine a functional transformation from the scales of 
measuring device to the standard coordinate system. From a mathematical point of view 
calibration problems belong to the more general class of unfolding problems described 
below.  
 
Model errors are specific for hierarchical, indirect measurements and can often result in 
more serious errors in interpretation of experimental data. As soon as one tries to 
describe a certain phenomenon by a functional dependence on measured data and some 
parameters, then the choice of the type of function and values of its parameter can 
appear critical in verifying of such a description. We include here also errors of the 
method implementation, such as errors of approximation, round-off and discarding of 
expansion members which are of higher order of smallness. A typical example of such 
model errors appears when one tries to approximate observations of an unknown 
dependence by a polynomial. A wrong choice of this polynomial degree leads to an 
unavoidable approximation error. It is just the error of the wrong model and results 
usually in a significant accuracy loss. 
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However, all the errors listed above are developed in statistics of observations and, 
therefore, each of them can be classified statistically either as a bias (systematic error) 
or as a random error. 
 
The systematic errors are caused by factors acting identically during the whole 
measuring process. The simplest example is weighing with wrong weights. It would 
always give you a wrong result unless you weigh a well-known standard weight, i.e. 
you make a calibration of your balance by calculating the difference between the 
previous biased measurement and a priori known weight of your standard. Then you 
can weigh any object and obtain its correct weight by adding that difference to the result 
of this biased weighing, which is, in fact, an example of the alignment transformation. 
 
The random errors vary even for completely identical conditions of measurements 
depending on many occasional reasons which influences can not be taken into account 
in advance. We do not consider here gross errors of measurements that usually can be 
avoided by a careful experiment design or be eliminated later by a corresponding cut-off 
procedure. 
 
Thus depending on the measurement process of any experiment some of errors listed 
above must be taken into account in order to improve the accuracy of measurements by 
a correct choice of statistical procedures embodying data handling algorithms. 
 
2. Mathematical Formalism 
 
In mathematical formulation we have a set of measurements (a sample) 
 

1 2, , , nx x x…          (1) 
 
to be processed statistically to extract the maximum of useful information related to the 
explored phenomenon with an acceptable level of accuracy. If our sample consists of 
equally distributed, independent random variables, then the first problem is usually to 
estimate their mean value and variance. More sophisticated problem is to estimate either 
the cumulative distribution function of our sample or its probability density function 
(p.d.f.). Depending on the nature of data and our a priori knowledge it can be done in 
several ways. 
 
2.1. Distribution-free Methods 
 
If the type of the sample distribution is unknown, one of distribution-free methods can 
be applied to estimate the sample mean value and even the distribution law of our 
sample. Theses methods are usually based on the order statistics ( )ix  obtained from (1) 

by reordering the sample in ascending order, so that (1) (2) ( ), nx x x≤ ≤ ≤…  and the 

ordered measurements ( )ix  are called the order statistics. In particular, one of those 

statistics, namely ( 2)nx  named the median is a good estimation of the distribution 
mean value. 
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The empirical probability distribution function of the order statistics defined as  
 

( )
(1)

( ) ( 1)

( )

0 <

<

1
n i i

n

x x

F x i n x x x

x x
+

⎧
⎪⎪= ≤⎨
⎪ ≤⎪⎩

      (2) 

 
can serve as a good estimation of the sample distribution law, whose accuracy is 
increased asymptotically with increasing .n  That allows us to determine the type of the 
sample distribution by some of distribution-free goodness-of-fit tests in order to apply 
afterwards one of the parametric methods described in the next subsection. 
 
2.2. Parameter Estimation 
 
In a parametric case the type of the sample distribution is known and the problem is to 
estimate its parameters. Given the sample (1), estimation consists in determining either 
a value (so-called point estimation) or an interval most likely including the unknown 
parameter value in question (interval estimation). 
 
2.2.1. Point Estimators 
 
Both terms: estimation and estimator are often used. There is a minor difference 
between them: the first one often denotes the process or the procedure of the parameter 
estimation whereas the second one more often denotes the specific function of the 
sample data which is used for parameter estimation. We shall use both terms. 
 
Estimators are constructed as functions of our sample data and, therefore, are random 
values, whose accuracy related properties can be expressed in probability terms only: its 
mean value, variance and probability of a big deviation from the estimated parameter. 
Thus having chosen an estimator, one can consider its goodness in terms of following 
basic properties: 
• consistency, 
• unbiasedness, 
• efficiency, 
• robustness. 
 
An estimator is called consistent if its estimates converge toward the true value θ  of the 
unknown parameter as the number n  of measurements increases. The convergence is 
understood in probability, i.e. given any ε  and any ˆ, nη θ  is a consistent estimator of θ  
if an N  exists such that  

( )ˆ > <nP θ θ ε η−  

 
for all > .n N  One of the most widely known estimators of the center of the sampling 
distribution is the arithmetic mean of the sample data (we call it further the sample 
mean) 
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1

1 .
n

i
i

x x
n =

= ∑                   (3) 

 
Its consistency follows from the famous law of large numbers for the majority of 
distributions. Although as a function of random measurements the sample mean is a 
random variable, it is more precise than any of these measurements, since its variance is 

n  times smaller. 
 
It should be borne in mind that there are distributions for which the law of large 
numbers is not valid and the arithmetic mean is an inconsistent estimator for these 
distributions. As an example, consider the probability density function of the Cauchy 
distribution 
 

( ) ( )2
1 , < < .

1
p x x

xπ
= −∞ ∞

+
      (4) 

 
Both the mean value and the variance do not exist for the Cauchy distribution. 
 
Denoting by E  the mathematical expectation of a random variable we define the bias b  
of the estimator n̂θ  as the deviation of its expectation from the true value 0 ,θ  
 

( ) ( )0
ˆ ˆ .n n nb Eθ θ θ= −  

 
Thus, an estimator is unbiased if for all n  and 0θ  
 

( )ˆ
n nb θ =0 

 
or 
 

( ) 0
ˆ .nE θ θ=  

 
Let us take as an example such an important characteristic of any distribution as its 
variance, i.e. the expectation of squared deviations of a random variable from its mean 
 

( )( )22 .x E x E xσ = −  
 
Calculating the sample variance one should replace the unknown value of the 
distribution mean by its statistical analog, i.e. the sample mean (3) that gives 
 

( )22

1

1 ,
n

x i
i

S x x
n =

= −∑         (5) 
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which is, in fact, an estimation of the variance of our sampling distribution. However 
the replacement we made introduces the bias in this estimator. As it is easy to calculate, 
its expectation is equal to 
 

( )2 2 2 21 1 ,x x x x
nE S

n n
σ σ σ−

= = −  

 
which means that we have the bias term 2 .x nσ  The estimator (5) is consistent and the 
presence of the small bias is not important when the sample size n  is very large, but for 
small n  we have to correct our estimator to make it unbiased  
 

( )22

1

1 .
1

n

x i
i

S x x
n =

= −
− ∑�  

 
The above two properties are important, but not enough to describe the goodness of an 
estimator. Since it is a random variable, its precision can be evaluated in terms of its 
variance. For instance, from the above mentioned consistent estimators of the 
distribution center, namely, the median and the arithmetic mean of the sample data, the 
second one has its variance smaller than for the median (in the majority cases, when the 
variance of the sampling distribution does exist). The arithmetic mean can be clearly 
considered as a more efficient estimator than the median. 
 
Thus, in general, the efficiency of an estimator is determined by its variance: the smaller 
it is the more efficient is this estimator. 
 
The estimator robustness means that it should be independent of the distribution, or 
insensitive to departure from the assumed distribution. In such a sense the median is 
more robust estimation for the sample distribution center than the sample mean (3), 
especially for distributions like Cauchy distribution (4), one having no mean value at 
all. 
 
More detailed consideration of robust estimates is given in Section 3 below. 
 
In the choice of a good estimator one can note a conflict between efficiency and 
robustness requirements. It is a typical situation when one wants to choose an estimator 
which must meet all requirements stated above and even some more needed to satisfy 
such realistic demands as minimum computer time or a simplicity in understanding and, 
in general, minimum loss of scientists’ time. To find a compromise one must establish 
an order of importance between these requirements taking into account statistical and 
other merits, like cost or time (urgency of completing a research). In frames of our 
present considerations we focus ourselves further on statistical merits. 
 
From this standpoint one of the most powerful statistical methods for estimating 
parameters is the maximum likelihood method (MLM) invented by R.Fisher (1912). 
Suppose for the sample (1) we know the probability density function ( , )f x Θ  common 
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for each ix  with unknown parameter vector 1( , , ).mθ θΘ = …  Then so-called likelihood 
function  
 

( ) ( ).
n

i
i

L p xΘ =∏         (6) 

 
is the density function for obtaining this sample if Θ  is fixed. The MLM consists in 
finding an estimate of parameters ˆ ,Θ  which maximizes ˆ( ).L Θ  Since the maximum of 
L  is also the maximum of ln ,L  it is easier to maximize the latter function by solving 
the likelihood equations 
 

ˆln( ( )) 0, 1,2, ,
k

L k m
θ

∂ Θ
= =

∂
…  (7) 

 
in order to obtain the maximum likelihood estimation ˆ .Θ  Its remarkable properties such 
as asymptotic consistency, efficiency and normality are proven. 
 
Now one can easily find MLM-estimates for a known sample distribution. 
 
Example 1. The Gaussian distribution is given by 
 

( ) ( )2
2

1; , exp
2 2

x a
f x a σ

σ π σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (8) 

 
For the sample (1) taken from a normal population one obtains 
 

( )( ) ( ) ( ) ( )22
2

1ln , ln ln 2
2

n
i

i
L a n x aσ σ π

σ
= − + − −∑  (9) 

 
The solution of the likelihood equations gives two MLM-estimates 
 

( )22

1 1

1 1ˆ ˆ ˆ, ,
n n

i i
i i

a x x a
n n

σ
= =

= = −∑ ∑      (10) 

 
which we already had before. 
 
Example 2. The Poisson distribution. It is a discrete distribution of the random 
variable taking values equal to whole positive numbers k  with the probability 
 

.
!

k

kp e
k

λλ −=          (11) 
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For the sample 1, , nk k…  one has 
 

( )( ) ( )1 1

1ln ln( ) ln .
!

nn

i
ii i

L n k
k

λ λ λ
= =

⎛ ⎞
= − + + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏     (12) 

The solution of the likelihood equation gives the estimate of the parameter λ  
 

1

1ˆ .
n

i
i

k
n

λ
=

= ∑  

 
 
2.2.2. Interval Estimators 
 
Each of the point estimators discussed above gives us a value intended to estimate an 
unknown parameter. As it was pointed out, these estimators are random by their nature, 
but obtaining a value we do not feel that its randomness is concealed and it could 
deceive about its accuracy or probability of being close enough to an unknown 
parameter. Therefore an experimenter prefers to use the estimators that include 
explicitly the range  
 

,a bθ θ θ≤ ≤  
 
which contains the true value 0θ  with probability .β  Given a measurement x  from a 

p.d.f. ( )f x θ  with a known parameter ,θ  the probability content β  can be calculated 
as  
 

( ) ( ) .
b

a

P a x b f x dxβ θ= ≤ ≤ = ∫       (13) 

 
However in our case we have an unknown parameter and too large arbitrariness in 
choosing the interval borders a  and .b  It would be better to choose an interval which 
has minimal length among all intervals [ ],a bθ θ  with the same probability .β  Such 
intervals are called confidence intervals for θ  with probability .β  Since the parameter 
θ  is unknown, one has to take a different variable ( , ),z z x θ=  a function of the 
measurement x  and the parameter ,θ  but such that its p.d.f. is independent of the 
unknown .θ  If it can be found, we can re-express Eq.(13) as a problem of interval 
estimation: given ,β  find the optimal range [ ],a bθ θ  in θ -space such that 
 
( )0 .a bP θ θ θ β≤ ≤ =         (14) 

 
It is better to explain this scheme with a particular example of the confidence interval 
for the mean of normally distributed sample data with the cumulative distribution 
function  
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( )
2

2
1 exp .
2 2

x tx dt
σ π σ−∞

⎛ ⎞
Φ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∫       (15) 

 
When both distribution parameters μ  and σ  are known one can calculate β  from (13): 
 

.b aμ μβ
σ σ
− −⎛ ⎞ ⎛ ⎞= Φ −Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

However when μ  is unknown (but σ  is known), one can instead calculate the 
probability β  that some of functions of our measurements, say the sample mean ,x  lie 
in an interval that includes its unknown mean. Let us take a symmetrical interval 
[ , ].c cμ μ− +  Then  
 

( )

( )2
2

1 exp ,
2 2

c

c

P c x c

t c cdt
μ

μ

β μ μ

μ

σ π σ σ σ

+

∗ ∗ ∗ ∗
−

= − ≤ ≤ +

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎜ ⎟= − = Φ − −Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫

  (16) 

 
where for the sample mean .nσ σ∗ =  We can now invert the probability statement in 
(16) in order to take the form of the statement (14): 
 

( ).P x c x cβ μ= − ≤ ≤ +  
 
As it is known in the case of the normal distribution, one can obtain 0.95β =  if the 
constant c  is chosen as 
 

1.96 1.96 .c nσ σ∗= =  
 
 
 
 
- 
- 
- 
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