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Summary 

 

Reinforced Concrete (RC) frames with Un-Reinforced Masonry (URM) infill walls are 

commonly used structural systems in seismic regions around the world. It is recognized 

that many buildings of this type have performed poorly during earthquakes. In the 

United States, their construction is no longer permitted. However, many such structures 

still exist. Besides, their construction is still continuing in many seismic regions around 

the world. Hence, it is essential to understand the behavior of this complex structural 

system. Accordingly, proper modeling is required for the seismic evaluation and for the 

selection of adequate retrofit methods, if needed. This chapter presents observations of 

damage from recent earthquakes related to RC frames with URM infill walls. Previous 

experimental and analytical research on infill walls is subsequently reviewed. Finally, a 

multi-phase study of RC frames with URM infill walls is presented.  

 

1. Introduction 

 

Un-Reinforced Masonry (URM) infill walls are widely used throughout the world, 

including seismically active regions, particularly as partitions in Reinforced Concrete 

(RC) buildings affecting both the structural and nonstructural performance of these 

buildings. When the seismic vulnerabilities present in the RC system (such as lack of 

confinement at the beam and column ends and the beam-column joints, strong beam-

weak column proportions, presence of shear-critical columns, etc) are combined with 

the complexity due to the interaction of the infill walls and the surrounding frame and 

the brittleness of the URM materials, non-ductile RC frames with URM infill walls may 

be considered as one of the world’s most common types of seismically vulnerable 
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buildings. It is recognized that many buildings of this type have performed poorly and 

even collapsed during recent earthquakes in Turkey, Taiwan, India, Algeria, Pakistan, 

China, Italy and Haiti. In many countries with emerging economy, vulnerable infilled 

frame buildings continue to be built at a rapid rate in order to keep up with urban 

population growth, representing major contributors to the increasing levels of global 

earthquake risk. Many buildings of this type that predate modern codes are also present 

in cities of developed countries.  

 

URM infill walls are generally treated as non-structural elements which are used mainly 

for architectural purposes. However, as structural elements, they have both beneficial 

and detrimental effects. Infill walls contribute to the lateral force resisting capacity and 

damping of the structure up to a certain level of ground motion. They increase the initial 

stiffness and decrease the initial period of the structure, which might be beneficial 

depending on the frequency content of the experienced ground motion, an example of 

which is the recent 2009 earthquake in L’Aquila, Italy. However, the URM infill walls 

are prone to early brittle failure and the infill wall failure may lead to the formation of a 

weak story. In addition, infill walls interact with the surrounding frame in such a way 

that column shear failure is made more likely. There is an interaction effect between the 

in-plane strength of the wall and its out-of-plane strength, with load in one direction 

reducing the strength in the other. Moreover, Out-Of-Plane (OOP) failure of the URM 

infill walls leads to life-safety hazard from falling debris. Related to configuration 

problems, non-uniform distribution of infill walls may lead to negative effects on the 

general behavior of a building. Many buildings have a soft story created by commercial 

space (shops) or parking at the ground floor. Infill walls can also induce torsion when 

some sides of the building have solid infill walls and the other sides have either infill 

walls with openings or no infill walls for architectural or usage purposes. 

 

Considering the above mentioned behavioral features, proper modeling of URM infill 

walls within RC frames is important for seismic evaluation and consequently for the 

selection of adequate retrofits. This chapter presents observations and damage of RC 

frames with URM infill walls from recent earthquakes. Previous experimental and 

analytical research on infill walls is subsequently reviewed. Finally, a multi-phase study 

of RC frames with URM infill walls is presented.  

 

2. Observations from Recent Earthquakes 

 

A large number of RC frames with URM infill walls have performed poorly and even 

collapsed during recent earthquakes in the 1990s and 2000s. In this section, 

observations related to damage in RC buildings with URM infill walls from four recent 

earthquakes, namely 1999 Kocaeli earthquake in Turkey, 2008 Wenchuan earthquake in 

China, 2009 L’Aquila earthquake in Italy, and 2010 Haiti earthquake, are presented. 

Kocaeli earthquake was a 7.4 magnitude earthquake which took place on the 1500-km-

long North Anatolian fault in northwestern Turkey on August 17, 2009. Wenchuan 

earthquake was an 8.0 magnitude earthquake occurred on the 480 km-long and 100 km-

wide Longmenshan fault on the northwestern margin of the Sichuan basin, China, on 

May 12, 2008. L’Aquila earthquake was a 6.3 magnitude earthquake which struck the 

central region of Italy near the city of L’Aquila, the capital of the Abruzzo region on 
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April 6, 2009. Haiti earthquake was a 7.0 magnitude earthquake centered approximately 

25 km west of Port-au-Prince, the capital of Haiti, on January 12, 2010. 

 

Two buildings, for which the damage after Wenchuan earthquake is concentrated at the 

first story, are shown in Figure 1. The first building, shown in Figure 1(a), is a six story 

building where the first story was used as a parking space and had less infill walls while 

the upper stories were residential and had many infill walls. The building leaned to the 

west after the Wenchuan earthquake with about 200 mm drift concentrated in first story 

columns. Figure 1(b) shows the second building which is a five-story RC frame 

building with the first story used as a commercial space and the upper stories were 

residential. The building was constructed with hollow shale tiles infill walls in the 

frames perpendicular and parallel to the sidewalk in the stories above the first story. In 

the first story, URM infill walls were only present in the back of the building with open 

front and sides. The first story columns in this building were severely damaged and 

likely close to loss of gravity load capacity because of the combined effect of soft first 

story and the torsional irregularity created by the non-uniform distribution of infill walls 

around the building perimeter. 
 

 
 

Figure1. First story damaged buildings – Wenchuan earthquake (photos by K. 

Mosalam) 

 

Figure 2 compares the damage of the building shown in Figure 1(a), the frontal one in 

Figure 2(a), with a building having more infill walls in the first story, the back one in 

Figure 2(a). As mentioned before, the former building experienced about 200 mm drift 

in the first story, whereas the latter building exhibited shear cracks in the first story 

infill walls and minor damage in the columns (Figures 2(b) and (c)), where the presence 

of infill walls in the first story likely played an important role in this better performance. 
 

 

Figure 2. Effect of the lack of first story infill walls on damage – Wenchuan earthquake  

(photos by B. Li) 
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Figures 3(a) to (f) show a group of photographs of infill walls in several three-story 

moment resisting frame buildings that were under construction during the time of the 

Wenchuan earthquake. All of these infill walls were constructed with hollow shale tiles, 

some of them had facing material or decorative surfacing. Some of the weakest hollow 

shale tiles suffered compression damage, and then parts of the infill wall collapsed at 

the time of the earthquake. However, the beams and the columns suffered minor 

damage in the cases shown in Figures 3(a), (b) and (c). The lower strength and greater 

stiffness of the hollow shale tiles infill walls compared with the RC frames caused 

damage to concentrate in the former, which dissipated part of the earthquake energy and 

protected the RC frame. The beams and columns suffered moderate to major damage in 

the cases shown in Figures 3(e) and (f). In all cases, infill walls suffered a combination 

of compression and shear damages. 
 

 
 

Figure 3. Damage of URM infilled RC frames – Wenchuan earthquake  

(photos by B. Li) 

 

The interaction between the URM infill wall and the surrounding frame depends on the 

relative strength and stiffness of the infill wall with respect to the bounding frame as 

well as the interface between the frame and the infill wall. As shown in Figure 3, when 

the infill wall is stiff but has low strength (hollow shale tiles), it can be damaged before 

it transfers sufficient force to the frame to cause damage of the frame. In the case of the 

infill being stiff and possessing higher strength (solid clay bricks), it can damage the 

surrounding frame as shown in Figure 4(a). However, in the case of no connection 

between the frame and the infill wall, the infill wall is damaged because of its brittle 

behavior. In this case, the frame may undergo minor damage because significant force is 

not transferred from the infill wall even though it has high stiffness and strength 

(Figures 4(b) and (c)). 
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Figure 4. Frame-infill wall interaction – Wenchuan earthquake (photos by B. Li) 

 

Figure 5 shows a five-story building, the third story of which collapsed during the 2009 

L’Aquila earthquake. It can be observed that the column sizes are small and therefore 

the infill walls had significant contributions to the story stiffness. For low to medium 

rise URM infilled RC buildings without vertical stiffness or strength discontinuities, 

first story infill walls are expected to be damaged first since they are subjected to the 

highest shear forces due to earthquake shaking. However, under bidirectional loading, 

infill walls of the upper stories may fail under the combination of OOP and In-Plane 

(IP) effects. Infill walls of the third story of the building in Figure 5 likely failed under 

the OOP/IP interaction. It can also be observed that some of the fourth story infill walls 

also failed, while infill walls of the other (first, second, and fifth) stories remained 

intact. After the failure of the infill walls, a soft and weak third story formed. It is 

speculated that the presence of stronger beams relative to the columns led to the 

formation of hinges at both of the column ends, which led to the collapse of the third 

story as a result of increasing deformations. 
 

 
 

Figure 5. Story collapse due to infill failure – L’Aquila earthquake (photos by K. 

Mosalam) 

 

A corner joint damage from L’Aquila earthquake is shown in Figure 6. It can be 

observed that the upper portions of the infill walls on both sides of the joint failed. 

These infill failures clearly affected the level and nature of the corner joint damage. If 

these infill walls did not fail, they would have transferred additional shear forces to the 

column from both building sides by compression strut actions. Moreover, these 

additional forces on the column would have reduced the shear forces on the corner joint. 

Although it can be observed that the joint is poorly detailed due to the lack of sufficient 

transverse reinforcement, it may have been possible to reduce the joint damage caused 

by the earthquake by spreading the damage to the column if the infill walls did not fail.  
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Figure 6. Joint failure due to infill damage – L’Aquila earthquake (photos by K. 

Mosalam) 

 

As it is stated previously, for low to medium rise URM infilled RC buildings without 

vertical stiffness or strength discontinuities, first story infill walls are expected to be 

damage first leading to the formation of weak and soft stories during ground shaking. 

Two buildings, the first story of which failed in Kocaeli and Haiti earthquakes are 

shown in Figure 7 and Figure 8, respectively. The first two stories of the building in 

Figure 7 failed completely, but damage in the upper four stories with even unbroken 

glass windows was limited. The first story of the building in Figure 8 failed, but there 

was no visible damage in the upper stories. Significant stiffness of the infill walls with 

respect to the framing system might have played a role in these failures. The brittle 

fracture of the first and second story infill walls in Figure 7 or only first story infill 

walls in Figure 8 prior to columns flexural yielding would have overloaded the non-

ductile first and second story (Figure 7) or only first story (Figure 8) columns in shear, 

likely resulting in the observed gravity load failure. 

 

 
 

Figure 7. First two stories collapsed building – Kocaeli earthquake (photos by K. 

Mosalam) 
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Figure 8. First story collapsed building – Haiti earthquake (photos by E. Fierro) 
 

3. Previous Research on Infill Walls 

 

Effect of infill walls on the behavior of frames under earthquake excitation has been the 

subject of numerous analytical and experimental investigations in the last three decades. 

Previous research on infill walls and the effect of infill walls on the behavior of frames 

under earthquake excitation are presented in this section. 

 

3.1. Analytical Studies 

 

Analytical models of infill walls can be categorized as micro-models and macro-models 

from the point of view of the utilized simulation technique. Micro-models are more 

detailed Finite Element (FE) models, which are better suited for analyzing the behavior 

of frames with masonry infills, whereas macro-models are more global elements 

(generally equivalent diagonal struts) which are suitable for design and practical 

assessment purposes. 

- 

- 

- 
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