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Summary  
 
The chapter describes different computational techniques which are useful for design 
and analysis of pressure vessels and piping systems as well as various other engineering 
applications.  The techniques presented here are the finite element method, boundary 
element method, element free method, finite volume method, and lattice Boltzmann 
method.  Because most of those techniques can be developed from the weighted residual 
method, the method is also presented. These techniques can be used for structural 
integrity of pressure vessels and pipes, flow analysis, heat transfer, and multi-media 
interaction.  Traditionally, some have been more frequently used to solid and structural 
system, and others for fluid and thermal system. In addition, some techniques are at the 
more mature stages than others which have been developed more recently.  It would be 
beneficial to understand those different techniques and apply them as needed for design 
and analysis of reliable and complex pressure vessels and piping systems. 
 
1. Introduction 
 
Design and analysis of pressure vessels and piping components and a system requires 
accurate and reliable calculations of necessary solutions such as stresses, strains, natural 
frequencies, mode shapes, fluid pressures and velocities, temperatures, etc. in order to 
achieve the desired performance of the system as well as to avoid any unexpected failure 
which may be catastrophic for some systems such as nuclear power systems.  As a 
result, the computational techniques have been used extensively for such designs and 
analyses.  In particular, the computational techniques provide engineers with physics-
based modeling and simulation capabilities so that expensive and sometime risky 
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experimental tests can be avoided or at least minimized. 
  
For the pressure vessels and piping communities as well as for most of other industrial 
communities, two computational techniques have been used almost exclusively.  They 
are the finite element method and the finite volume method.  The finite element method 
has been used extensively for stress and dynamic analyses while the finite volume 
method has been used more frequently for thermal-fluid analyses.  Therefore, those 
techniques are discussed in this chapter.  In addition, this chapter also presents other 
techniques which have not been as popular as the two mentioned techniques so far but 
have great potential for more frequent uses in the near future. Those techniques include 
boundary element method, element free method, and lattice Boltzmann method. The first 
two are useful for analyses of the solids and structures while the last one is good for the 
fluid medium. 
 
Understanding and comparing those techniques will be beneficial for improvement of 
the design and analysis procedures of pressure vessels and piping components and 
systems. The subsequent section discusses the weighted residual method which has 
played an important role in developing various computational techniques. Then, 
different computational techniques are presented one after another.  Finally, conclusions 
are provided at the end of this chapter. 
 
2. Weighted Residual Method 
 
Most of real life engineering problems are too complex to obtain their exact solutions. 
As a result, it is necessary to determine acceptable approximate solutions to those 
problems.  With the aid of computing technology in terms of hardware and software, 
various computational techniques have been developed to provide reliable approximate 
solutions to most of complicated engineering problems including those in pressure 
vessels and piping systems.  Those problems include, but not limited to, linear and 
nonlinear stress analyses, buckling analyses, vibration analyses, fluid flows and heat 
transfer analysis, multi-media analysis such as fluid-structure interaction, etc. 
 
Many of computational methods can be derived from approximate analytical solution 
techniques. One of such techniques is the weighted residual method.  This technique is 
based on an assumed function of approximate solution set which contains some 
unknown coefficients. This assumed function is called a trial solution. For a better 
explanation, we will consider the following problem which is the 2nd order ordinary 
differential equation: 
 

0)1( and 0)0( ,10  ,012

2

==<<=− uux
dx

ud                    (1) 

 
Even though the exact solution is available for the given problem, we will demonstrate 
how to obtain an approximate solution using the weighted residual formation.  As stated 
above, a set of approximate solution is assumed.  Because the polynomial function is the 
simplest form of function and it can represent any complex function using the 
polynomial series expansion, a polynomial function is usually selected as an 
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approximate solution set. 
 
For the given problem, the lowest order of polynomial for an assumed function is a 
quadratic polynomial function. If a linear polynomial were selected as a trial solution to 
meet the given boundary conditions, the solution would be zero. As a result, a quadratic 
polynomial is the lowest order of a polynomial trial solution with a non-zero solution. 
That is, the trial solution is chosen as 
 

cbxaxu ++= 2~                                (2) 
 
where , ,  and a b c are coefficients of the polynomial, and u~  represents the trial solution.  
Applying the boundary conditions to the trial solution yields  
 

)1( −= xaxu                                  (3) 
 
Now, the trial solution has one coefficient to be determined. The eventual approximate 
solution depends on the coefficient which should be should be determined in order to 
make the approximate solution as close as possible to the exact solution. In order to 
determine an optimal value for the coefficient, we need to have a measure for the error. 
One of such measures is the residual which is computed by substituting the trial solution 
into the differential equation. Then, the residual is expressed as 
 

12 −= aR                                   (4) 
 
If the residual vanishes over the whole problem domain, the approximate solution 
becomes the exact solution because it satisfies both the differential equation and the 
boundary conditions exactly.  However, in most of cases the residual is not zero all over 
the problem domain even though it may be zero at some selected locations of the 
problem domain.  This means the approximate solution is not the exact solution. We also 
want to make the approximate solution as close as possible over the entire problem 
domain rather than at certain local zones.  Therefore, we want to minimize the sum of 
the errors. In that aspect, we need to compute the sum of residual over the entire domain. 
This means integration the error over the problem domain.  
 
In order to avoid canceling a positive error by a negative error, we add up the square of 
the residual over the problem domain as given below: 
 

{ } dxxaRaI
21

0
),()( ∫=                              (5) 

 
Then, we minimize the sum of the squared residual with respect to the unknown 
coefficient a  by taking a derivative as below: 
 

1

0

( ) 2 0dI a dRRdx
da da

= =∫                             (6) 

 
Solving the above equation yields the value for the unknown coefficient 0.5a = .  This 
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means an optimal approximate solution is 
 

)1(5.0~ −= xxu                                 (7) 
 
We may generalize Eq. (6) into the following expression: 
 

∫ ==
1

0
0)()( dxxRxwI                              (8) 

 
In this equation, the residual was multiplied by a weight function (or called a test 
function). Then, the weighted residual was summed over the problem domain and set 
equal to zero.  Comparing Eqs. (6) and (7) results in dadRw =  because the constant 
value 2 does not affect the solution. When the test function is selected in such a way, it 
is called the least square method that is one of the weighted residual formulations. In 
general, the test function may be selected differently. Depending on its choice, the 
weighted residual method can be classified into various techniques.  One of the common 
techniques is the Galerkin method for which the test function is chosen as 
 

da
udw
~

=                                    (9) 

 
Applying the Galerkin method to the previous example gives )1( −= xxw . Then, the 
coefficient a  is determined from Eq. (8), and it turns out to be 0.5.  In this case, both the 
least squares method and the Galerkin method resulted in the same value for a  because 
their solutions are the exact solution. However, the two methods, in general, yield 
different approximate answers. 
 
If we want to improve the accuracy of the approximate solution, we may use a higher 
order polynomial function for the trial function. For example, if a cubic polynomial 
function is selected for the trial function instead of a quadratic polynomial function, 
there are two coefficients to be optimized after applying the two boundary conditions.  
Because the quadratic function is a subset of the cubic function, the cubic function has a 
greater flexibility to represent the solution with less minimal error.  As the order of the 
polynomial function increases, the accuracy of the solution also improves.  If the exact 
solution can be expressed in a polynomial of certain order, and the trial function is 
selected with the same or higher order of polynomial, the approximate solution will turn 
out to be the exact solution because the exact solution has the least of all the minimal 
errors, i.e. the zero error. 
 
- 
- 
- 
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