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Summary  

 

Dynamic ice structure interaction can develop while moving level ice is breaking in 

crushing mode against a fixed offshore structure. The structure responds to varying 

loads with its natural modes of vibrations. The effect of ice load becomes amplified 

when the dynamic ice load increases the structural response and at the same time the 

dynamic motion of the structure makes the ice failure easier. Together these factors 

contribute to the energy interchange from the driving ice load to structural kinetic and 

strain energy. As the energy input into the structure is most efficient at a natural mode 

frequency, one of the lowest structural modes can start to dominate the ice failure 

frequency and paves way into the state of frequency lock-in vibrations. This is a severe 

-resonant type -loading case and can easily cause damage to an offshore structure. 

Dynamic ice structure interaction raised the interest of ice researchers and engineers 

after the first Cook Inlet oil production platforms exhibited unexpected dynamic 

response in 1960’s. Thereafter similar cases have been experienced in almost all ice-

infested waters where fixed offshore structures have been prone fore the action of 

moving level ice. In some cases even severe structural damages have been encountered. 

The scientific research to understand the physics of ice structure dynamic interaction 

has been going on now already over 40 years. By studying the ice mechanical 

properties, especially ice strength dependence on loading rate and ice disintegration 

mechanics, performing both scale-model and full-scale testing, and developing 

numerical simulation methods, a holistic view of the ice-structure dynamic interaction is 

evolving that allows to design structures immune to adverse dynamic ice structure 

dynamic interaction effects. 
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1. Introduction  

 

1.1. Description  

 

Solid ice sheets at large bodies of water in nature can often drift and move while driven 

by winds and currents. Solid ice hitting a stationary offshore structure will generate 

heavy loads. While a constant thickness level ice is moving at constant velocity and 

crushing against an offshore structure, one would intuitively expect almost a constant 

ice load -with only some random variations. In engineering practice, a normal method is 

then to design the structural capacity to exceed the maximum ice load with a certain 

factor of safety. Structural failures due to ice action have disproved this kind of 

thinking. The reason is the unexpected violent ice and structure dynamic interaction. 

 

Under ice action the structure deflects and stores both elastic and kinetic energy until 

ice fails. Then, as structure starts to spring back against the ice movement, the relative 

velocity between ice and structure increases, ice failure occurs easier, and a part of the 

elastic energy in the structure is transforming into kinetic energy. If during the next ice 

edge pushing against the structure both the ice load and kinetic energy are acting 

together the displacement amplitude of structure is further increasing. Then more 

energy is accumulating into the structure during each ice failure cycle and vibration 

amplitudes are increasing. The process is self-excited and has a natural limit. After the 

structural velocity response at the waterline exceeds ice velocity, the contact between 

ice and structure is lost. Then further energy accumulation into the structure reaches its 

limit because the internal structural damping energy losses would increase continuously 

with increasing vibration amplitudes. In such a limit state of vibrations the net energy 

inflow during each vibration cycle is zero while all the energy input from ice pushing is 

dissipated into ice crushing and structural damping.  

 

The origin of ice induced structural vibrations has been under dispute for over 40 years.  

 

Explanations for the phenomenon have included:  

 ice has a tendency to break at certain frequency  

 ice has a tendency to break at certain failure length  

 ice/structure dynamic interaction is a self excited vibration process 

 

The first two of these explanations have been proven wrong in scale model tests simply 

by changing the mass or stiffness at the model superstructure. This has changed the 

frequency or the apparent failure length provided ice velocity in the same ice field has 

been kept constant. The present understanding is that dynamic ice structure interaction 

initiates from dynamic instability and is a nonlinear self-excited process.  

 

In the nature more familiar physically comparable dynamic interactions are:  

 disk break screeching  

 chalk squealing on blackboard  

 violin sound  

 milling machine chatter 
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Common in these three cases is a mechanical system capable to store both elastic and 

kinetic energy, and an interaction process -friction -that depends on the relative velocity 

between the constant driving velocity and the response velocity of the mechanical 

structure. This dependence is analogous to ice crushing strength dependence on loading 

rate, resulting from the difference of ice velocity and the response velocity of the 

structure in the direction of ice movement. In milling machines both the friction and 

material strength dependencies on relative velocity are present during chattering.  
 

Physically different but analogical dynamic interactions where structure captures energy 

from the environment are:  

 flow velocity induced vortex shedding in piles  

 flutter of aircraft structures at constant airspeed  
 

In vortex shedding the vortex separation is dependent on the pile diameter and on water 

flow velocity. Each vortex separation induces lateral load pulse in addition to drag load. 

Lateral load pulses store elastic and kinetic energy to the pile. At certain velocity the 

vortex separation rate hits that of the lateral vibration frequency of the pile. During the 

flutter of aircraft structures elastic deformations -bending and twisting -interact with 

structural inertia and aerodynamic loads. 

 

With increasing velocity the rate of these changes will get close to those corresponding 

to natural mode frequencies and allow energy storing into the structure and cause 

violent vibrations. All these can be explained and modeled by the self-excited vibration 

theory. Similar physical and mechanical properties play role in the dynamic ice-

structure interaction.  
 

1.2. History  
 

No reports have been found on the occurrence of moving ice induced vibrations before 

the incidents at the Cook Inlet, Alaska, at the beginning of 1960’s. It is likely that 

already well before this there have been ice-induced vibrations in bridge piers and on 

piers in marinas. However, due to low economic impact, or no threat to environment, no 

research results have been published. The bridge pier vibrations were studied in 1970’s 

and later, after the Cook Inlet incidents in Canada and USA, Montgomery, Neill, 

Haynes. First reported structural failures occurred in the fall 1973 at the Gulf of Bothnia 

in Finland as soon as moving ice thickened over 10 cm and induced severe resonant 

type vibrations in new steel lighthouses. In 1980’s and 90’s oil/gas production 

structures experienced disturbing continuous vibrations at Bohai Sea while tidal 

currents moved ice fields. All these incidents occurred in relatively slender and flexible 

bottom founded structures. Then in 1986 the blunt and massive caisson retained island 

Molikpaq in the Beaufort Sea experienced severe periodically repeating ice loadings 

under the action of thick multi-year ice that threatened the structure’s foundation 

stability due to increasing pore pressure in the foundation soil (Jeffries et al, 1988).  
 

1.3. Dynamic Ice-Structure Interaction Definition  
 

The dynamic ice structure interaction means that both the ice and the structure interact 

through the contact process, and that the action of each party changes the dynamic state 

of the other. Quite evident is the driving energy of ice storing into the kinetic and elastic 
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energy of the structure. More hidden is the effect of the dynamic response of the 

structure to change the ice failure process against the structure, especially the rate 

dependent ice crushing failure mode from ductile to brittle and vice versa. The energy 

storing into the structure is the key issue causing much higher stresses in the structures 

compared to otherwise similar but static ice-structure interaction cases.  

 

The effect of strain rate from ductile to brittle ice failure can be coupled to 

micromechanical phenomena during ice-structure interaction. Initially, as structure is 

moving close to ice velocity, the creep deformation is taking place. The increasing 

structural resistance increases stresses in the ice and local micromechanical changes -

damage -is starting to occur and the load is gradually transmitted mostly through the 

localized high pressure ice contact (Joensuu, 1988; Jordaan et al 2008; Gagnon, 2011). 

At last, the failures of these high-pressure zones initiate brittle crushing after which a 

new contact is established with initial ductile load build up for the next loading cycle.  

 

The rate dependence of ice crushing failure can dominate the ice failure synchronizing 

into the natural frequency of the structure and yield to the most severe loading case: the 

frequency lock-in. During frequency lock-in the ice failure repeats close to the natural 

frequency of the structure. This state can prevail at a relatively large ice velocity range. 

The frequency lock-in can also shift from one natural frequency of the structure to 

another if ice movement velocity changes sufficiently. If a natural frequency of the 

structure starts to control the ice failure frequency it brings with the local ice failure 

synchronization in wide structures and at different legs of a multi-legged structure.  
 

1.4. Adverse Effects on Structures  
 

Even small dynamic loads -especially if close to a natural frequency -will cause 

annoying structural vibrations, can increase maximum stresses in the structure, and 

require the structural components to be designed against fatigue. Dynamic ice structure 

interaction in wide and multi-legged structures can synchronize the otherwise unrelated 

local ice failures at interaction zones to occur simultaneously which further increases 

significantly the overall load level from that of uncorrelated loads.  

 

Foundations carry through the ice loads to the foundation soil but the underlying soil 

resistance to loads is dependent on the frequency content of loads. In many soil types 

the ambient pore pressure controls the maximum load capacity. Soil dynamic 

deformation due to ice structure interaction will increase pore pressure and reduce soil 

strength. This was what happened to Molikpaq in April 1986 during a multi-year ice 

floe action (Jeffries et al, 1988). The dynamic fluctuating ice load action increased the 

foundation pore pressure to such a level that a serious threat was close for the whole 

structure to start move along with the ice. Luckily the ice movement stopped before any 

significant damage occurred.  

 

2. Full-Scale Observations and Measurements  

2.1. Cook Inlet  

Cook Inlet is over 270 km long and in average about 20 km wide fjord at the Gulf of 

Alaska, 60
o

N, with the city of Anchorage at the North-Eastern end. The area is strongly 
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affected by tidal currents up to 2 m/s with up to 9 m tidal range. The sea ice can be 

present from November to May and its thickness can grow up to 1 m. Due to tidal 

actions the ice cover is not uniform but mostly broken and rafted. With continuously 

and strongly varying ice parameters -especially ice thickness and velocity -it is quite 

likely that any offshore structure will encounter dynamic ice loads. In addition to ice 

actions, the Cook Inlet platforms are also prone for earthquake actions.  

 

The first Cook Inlet oil and gas production structures after 1964 were the first to raise 

research interest on resonant type of vibrations during dynamic ice-structure interaction. 

Between 1964 -68 a total of 14 offshore structures were completed and they included a 

monopod, and three-to four-legged platforms, Fig, 1 and 2. Peyton, 1966 and 1968, 

studied thoroughly Cook Inlet ice strength and measured ice loads against offshore 

structures as well as structural response in dynamic ice structure interaction. He 

measured ice crushing strength dependence on strain rate and noticed significant ice 

strength reduction at increasing load rate, Figure 3. Interestingly, similar ice strength vs. 

loading rate dependence was later measured also at Bohai Sea, Figure 4. Peyton 

measured the ice load against a vertical pile that was fixed in front of the platform. He 

observed solid ice to crush into small pieces while compressing against the pile, 

breaking a path about the width of the pile, highest loads at slow ice velocities and with 

increasing ice velocity dynamic ratcheting type ice load fluctuations. At higher ice 

velocities the load peaks reduced to about half from the maximums. He described: “The 

failing ice can cause resonant vibration in structures, and the forces are large enough to 

resonantly vibrate structure weighing several thousand tons”. However, in his studies of 

dynamic loads his conclusion was “The ice force oscillation is an ice property and is not 

primarily a function of the response of the structure”.  

 
Figure 1. Monopod “Trading Bay” 
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Figure 2. Four-legged platform “Bruce” 

 
Figure 3. Cook Inlet ice strength (Peyton, 1966) (1 psi ≈ 7 kPa) 
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Figure 4. Bohai Sea ice compressive strength (Meng &Wang, 1987) (kg/cm

2 

≈ 0.1 MPa)  

 

At the end of the 1960’s Blenkarn studied also dynamic ice structure interaction at Cook 

Inlet structures. He coupled the ice and the structure together through the interaction 

load, and took into account the vibration velocity of the structure. Then the loading rate 

of the ice will be dependent on the sum of constant ice velocity and the vibration 

velocity of the structure. Hence the ice structure interaction load becomes dependent 

also on the dynamic response of the structure. Based on Peyton’s ice strength 

dependence on the loading rate Blenkarn (1970) presented a single degree of freedom 

dynamic equation of motion. The condition for dynamic instability gave means to 

calculate at what conditions ice induced vibrations can arise. Physically this condition 

means that the momentary energy input from the ice failure exceeds the amount of 

energy dissipation in the structure. Physically this means that for the inspected single 

degree of freedom system the ice induced negative damping -the interpretation of the 

decreasing ice load with increasing interaction velocity -is equal to that of structural 

damping. This was the first model to suggest how to design structures immune to ice 

induced resonant vibrations.  

 

- 

- 
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