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Summary  
 
In this paper we review the context in which rheological constitutive equations are used 
in the continuum approach to fluid modeling.  The Newtonian fluid is an excellent 
model for materials that are simple, including oil, water, and most organic liquids.  For 
non-Newtonian fluids, three groups of constitutive models are identified:  inelastic, 
linear-viscoelastic, and non-linear viscoelastic.  The inelastic models are quite useful for 
pressure-drop/flow-rate calculations.  They are also the easiest with which to compute.  
The linear-viscoelastic models are all equivalent, and are excellent in being able to 
describe the behavior of non-Newtonian fluids in the linear-viscoelastic regime.  The 
non-linear viscoelastic models are both difficult to compute with and incomplete in their 
ability to mimic fluid behavior.  The strengths and weaknesses of individual non-linear 
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viscoelastic models must be considered when making predictions with these models. 
 
1. Introduction 
 
The fluid state of matter is produced when forces between molecules are just so:  large 
enough that the molecules remain in close proximity but too small to force the 
molecules to remain in fixed locations.  When outside forces act on a fluid, it moves and 
deforms.  How fluids move and deform and the forces that are generated when fluids 
move and deform is the subject of fluid mechanics and of rheology. 
 
There are two common approaches to modeling the fluid state, the molecular approach 
and the continuum approach.  In the molecular approach, the various intermolecular 
forces are accounted for, and the positions of individual molecules are calculated.  In 
the continuum approach individual molecules are not considered, but rather a few field 
variables, for example density, local velocity, and stress, are defined and tracked using 
models that are constructed to mimic molecular behavior.   
 
In both the molecular approach and the continuum approach the final goal is the same:  
to calculate how fluids move and deform.  The difference in the approaches is in how 
the motion and forces are accounted for.  In the continuum approach, forces in a fluid 
are accounted for by a field variable, the stress tensor, which lumps together all the 
molecular forces that are at play in a fluid.  The stress tensor must be deduced from 
observations of a fluid of interest, and in this paper we discuss the equations for stress, 
the stress constitutive equations, that have been used to model many different types of 
materials.  For Newtonian fluids the stress constitutive equation is well known; for 
viscoelastic fluids there are many different constitutive equations that have been 
developed, each with advantages and disadvantages.  These are discussed. 
 
2. Fluid Mechanics Basics of Rheology 
 
2.1. Conservation Equations 
 
Modeling in fluid mechanics and rheology is based on three conservation laws, the laws 
of conservation of mass, momentum, and energy.  Performing balances on an arbitrary 
volume in a flowing fluid leads to the three equations that encode these conservation 
laws, the continuity equation, the Cauchy momentum equation, and the equation of 
conservation of energy. 
 
Continuity equation (mass balance)  
 

( ) 0=⋅∇+
∂
∂ v

t
ρρ  

 
Cauchy momentum equation (momentum balance)
 

gpvv
t
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Conservation of energy  
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∂
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where ρ  is the fluid density, t  is time, v is the fluid velocity, pis pressure, τ is the 

stress tensor, g is the acceleration due to gravity, pĈ  is the specific heat capacity, T is 

temperature, k is thermal conductivity, and Ŝ  is the rate of energy production per unit 
volume.  Both the continuity equation and the equation of conservation of energy are 
scalar equations.  The Cauchy momentum equation, which is the momentum balance, is 
a vector equation, and thus has three components.  All three equations are written above 
in Gibbs notation (vector/tensor notation), which is discussed thoroughly in the 
literature.  When solving a problem, the equations can be written in any coordinate 
system, and the components of these equations in common coordinate systems may be 
found in the literature. 
 
The conservation equations fundamentally seek to tell us how three important field 
variables are distributed in space and time:  density, velocity, and temperature.  The use 
of field variables to describe a fluid system is part of the continuum model of fluid 
mechanics.  In the continuum model, a fluid is visualized as having properties that are 
continuous in space.  Density of a fluid, for example, is the mass per unit volume.  The 
density of a fluid can vary with position and time, and thus density is a function 
of ,  ,  ,  and x y z t .  The function that gives density, ),,,( tzyxρ , is a field variable.  
 
The continuity equation comes from the basic principle that matter can neither be 
created nor destroyed.  When this principle is applied to a small volume in a flow, the 
continuity equation results:  there is no additional physics needed to arrive at the result.  
The Cauchy momentum equation comes from Newton’s second law applied to a small 
volume in a flow.  This volume is called the control volume.  Newton’s second law says 
that the sum of the forces on a body is equal to the mass times the acceleration of the 
body, ∑ = amf .  When this law is applied to the control volume, the Cauchy 
momentum equation results.  The three terms on the right-hand side of the Cauchy 
momentum equation represent the forces on the control volume:  pressure forces, 
molecular forces other than pressure, and gravity forces. 
 
2.2. Constitutive Equations 
 
In order to apply the momentum balance to a flow, and to subsequently solve for the 
velocity field, more must be known about the middle term on the right-hand side of the 
Cauchy momentum equation.  This term accounts for molecular forces other than 
pressure; these molecular forces are codified in an additional field variable, the stress 
tensor ),,,( tzyxτ .   
 
The stress tensor is a mathematical construct that allows us to calculate the molecular 
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stresses at a point in a flow as a function of the velocity field.  The stress tensor is a 
very powerful and useful system for keeping track of molecular effects.  Just as density 
is a field variable that represents in a continuous function certain molecular effects (the 
distribution of mass in space), stress is a field variable that represents in a continuous 
function the molecular effects that result in forces in a fluid.  In the case of density, the 
distribution of mass in space may be adequately accounted for by a scalar function that 
varies with position and time.  The velocity field is another field variable, one that 
represents in a continuous function the local fluid velocity as a function of position and 
time.  At each position we need to know both magnitude of the local fluid velocity and 
the direction of the local fluid velocity, and thus we use a vector function for the field 
variable v . For stress, it is neither possible to adequately account for molecular forces 
with a single scalar function of position and time, nor with a single vector function of 
position and time.  For stress, to express the forces present in a fluid at a location, we 
must specify both the orientation of the surface on which the forces are acting and the 
direction and magnitude of the force itself.  The mathematical entity that can keep track 
of these three things – the orientation of the surface, the direction of the force, and the 
magnitude of the force – is the tensor.   
 
The simplest way to think of a tensor is as a 3x3 matrix of tensor components that acts 
on vectors as 3x1 or 1x3 matrices.  Thus, the dot product of the unit vector n̂  with the 
tensor τ can be written as 
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where the in  and kmτ  are the coefficients n̂  and τ  in some orthonormal coordinate 
system.  The fundamental meaning of the stress tensor in fluid mechanics is that the 
force f on a small area dA in a flow is given by 
 

( )dAnf τ⋅= ˆ  
 
where n̂  is the unit vector normal to dA .  It is in this form that the stress tensor enters 
into the derivation of the momentum balance and subsequently comes to occupy its 
position on the right-hand side of the Cauchy momentum equation. 
 
The stress tensor is not a constant, but is variable, and it is a function of the velocity 
field.  Thus the momentum balance cannot be solved until the functional form of )(vτ  is 
known.  The equation that gives )(vτ  for a chosen fluid is called the stress constitutive 
equation or simply, the constitutive equation. 
 
2.3. Newtonian Fluids 
 
The constitutive equation is a mathematical relationship that gives the stress tensor as a 
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function of the velocity field for a particular fluid.  It is applicable to any flow, but it is 
specific to a particular fluid.  For the simplest types of fluids, incompressible 
Newtonian fluids, the constitutive equation is known. 
  
Newtonian constitutive equation ( ) ( )Tv v vτ μ ⎡ ⎤= ∇ + ∇⎣ ⎦  

 
This equation, called the Newtonian constitutive equation, is written in Gibbs notation, 
which can be translated to any coordinate system by using standard tables.  The 
Newtonian constitutive equation contains one material parameter, μ , the viscosity, 
which is a constant. 
 
If the Newtonian constitutive equation is substituted into the momentum balance, the 
Cauchy momentum equation becomes 
 
Navier-Stokes equation  
 

gvpvv
t
v ρμρ +∇+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ 2  

 
This equation, called the Navier-Stokes equation, is the momentum balance for 
incompressible, Newtonian fluids.  In combination with the continuity equation and the 
equation of conservation of energy, the Navier-Stokes equation can be solved and all 
the field variables ( )Tv,,,τρ  determined for a chosen flow.  The Newtonian 
constitutive equation works well for fluids such as water, oil, air, and most other small-
molecule pure liquids. 
 
2.4. Non-Newtonian Fluids 
 
For many fluids, the Newtonian constitutive equation does not make accurate 
predictions.  For materials that are not pure (suspensions, emulsions), for large molecule 
liquids (polymers, gels), and for liquids with special intermolecular forces (ionic 
liquids, magnetic liquids), the Newtonian constitutive equation is inadequate.  Materials 
that generate velocity and stress effects that are not represented by the Newtonian 
constitutive equation are called non-Newtonian fluids.   
 
The remaining three sections of this article are descriptions of constitutive equations for 
non-Newtonian fluids.  There is not just one non-Newtonian constitutive equation; 
rather, there are an infinite number of such equations, since there are an infinite number, 
or at least a very large number, of fluids that are not represented by the Newtonian 
equation.  For each fluid that is non-Newtonian there may be a different constitutive 
equation. 
 
The types of constitutive equations that are discussed fall into three categories:  inelastic 
models, linear-viscoelastic models, and nonlinear-viscoelastic models.  These three 
categories represent physics of increasing complexity and consequently increasing 
difficulty of both comprehension and implementation.  The inelastic models and the 
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linear-viscoelastic models are well understood; the nonlinear-viscoelastic models 
represent an area of current research, although much groundwork has been laid and 
there are many practical nonlinear-viscoelastic models.  For more details on these 
topics, please see the references cited at the end of this article. 
 
3.  Inelastic Models 

 
The principal shortcoming of the Newtonian constitutive equation is that it relies on a 
single, constant material parameter, the viscosity.  For many materials, the viscosity is 
not constant but varies with flow conditions.  Thus, one approach to improving the 
applicability of the Newtonian constitutive equation is to develop models that allow for 
variable viscosity.  Such a model is the generalized Newtonian model. 
 
Generalized Newtonian model ( )Tv vτ η ⎡ ⎤= ∇ + ∇⎣ ⎦  

 
The function ( )vη  is called the non-Newtonian viscosity, and it is a function of the 
velocity field. 
 
The generalized Newtonian fluid model is actually a family of models, since different 
equations are created for different choices of the function η .  We have a great deal of 
flexibility in choosing the function η , but there are constraints.  First, the constitutive 
equation must be able to be meaningfully translated into any coordinate system.  Thus, 
when we write the function η  in terms of the velocity field, we may not reference 
components of v in any particular coordinate system.  Second, the constitutive equation 
is applicable to any flow; thus the choice of η  must not be exclusive to one particular 
flow.  Third, once η  is chosen, the predictions of the constitutive equation should be 
correct, that is, should be what is observed for a fluid of interest. 
 
To meet these criteria, we note that vector magnitudes are independent of coordinate 
system and may therefore appear in functions such as η .  Similarly, tensors have scalars 
associated with them that are independent of coordinate system; these scalars are called 
a tensor’s invariants, and there are three invariants for tensors of the type we are 
discussing here. 
 

Tensor invariants of A  ( )
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The tensor invariant that is found to capture the effect of the flow on the viscosity is the 
second invariant of the rate of deformation tensor. 
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Rate of deformation tensor ( )Tv vγ ≡ ∇ + ∇  

 
Note that the rate-of-deformation tensor appears in both the Newtonian constitutive 
equation and the generalized Newtonian constitutive equation.  The usual way to write 
the functionality of η  is to write it in terms of γ , the magnitude of the rate of 
deformation tensor, which is related to the second invariant of γ   as follows: 

 

Magnitude of γ  γγγ II
2
1

≡=  

 
Thus, the non-Newtonian viscosity is written as ( )γη , and the generalized Newtonian 
constitutive equation becomes 
 
Generalized Newtonian fluid (GNF) constitutive equation ( ) ( )Tv vτ η γ ⎡ ⎤= ∇ + ∇⎣ ⎦  

 
The quantity γ  is read as “gamma dot” and is called the rate of deformation.  In shear 
flows, γ  is called the shear rate. 
 
3.1. Power-Law Model 
 
A common choice for the viscosity function is the power-law equation; 
 
Power-law viscosity function 1−= nmγη  
 
where m  and n are parameters of the model.  The pre-factor m is called the consistency 
index, and the exponent n  is called the power-law index.  The power-law function 
appears as a straight line when viscosity versus γ  is plotted on a log-log graph.  Note 
that for 1n = the viscosity is constant, and thus 1n =  corresponds to the Newtonian case 
with viscosity equal to m .   
 
It is fairly easy to make calculations of flow and stress fields with the power-law 
generalized Newtonian fluid constitutive equation.  For many polymer melts values of 

1n < correctly capture flow behavior at high rates of deformation.  The overall 
predictions of the power-law GNF are found to be adequate when pressure-drop/flow-
rate information is desired.  GNF models are incapable of predicting memory or other 
elastic effects, however; also it is not possible to estimate a relaxation time from any of 
the parameters of the power-law GNF. 
 
3.2. Carreau-Yassuda Model 
 
The variation of viscosity with γ  often follows a shape shown in Figure 1.  The power-
law model only captures the high-rate portion of this curve.  An equation that captures 
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the entire curve is the Carreau-Yassuda model. 
 
Carreau-Yassuda viscosity function  
 

( ) ( )
1

0 1
n

a aη η η η λγ
−

∞ ∞
⎡ ⎤= + − +⎣ ⎦  

 
 
where the five parameters of the model are the zero-shear viscosity 0η , the infinite-
shear viscosity ∞η , the relaxation time λ , the power-law index n, and the shape 
parameter a .  The zero-shear viscosity captures the low-γ  plateau; the infinite-shear 
viscosity captures the high-γ  plateau; the relaxation time determines the value of γ  at 
which the low-γ  plateau ends; the power-law index determines the slope of the rapidly 
decreasing portion of the curve; and the shape parameter determines the shape of the 
transition between the upper plateau and the rapidly-increasing portion of the curve. 

 
 

Figure 1.  Most polymer melts are shear-thinning, showing a zero-shear plateau at low 
rates and a power-law region at high rates.  A viscosity function that captures these 

features well is the Carreau-Yassuda viscosity function, which is shown fit to data for 
polydimethylsiloxane above (Data are from Piau et al.). 

 
The Carreau-Yassuda model does a better job of capturing the shape of the viscosity 
function but at the expense of calculations becoming considerably more difficult.  
Because the Carreau-Yassuda model is a generalized Newtonian fluid model, it shares 
with the power-law model the inability to predict memory or other elastic effects. 
 
- 
- 
- 
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