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Summary 
 
Rheo-optical methods have become an established technique in the study of structured 
fluids. More than rheology, the techniques provide in-situ information of morphological 
changes during flow. In this chapter, the emphasis is on indirect optical techniques such 
as polarimetry and light scattering. The fundamentals of dichroism, birefringence and 
scattering are briefly reviewed. In order to demonstrate the power of the techniques, 
several case-studies are provided. They encompass many material classes, ranging from 
emulsions, suspensions and crystallizing polymeric systems. 
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1. Introduction 

 
In the classical rheometrical approach, only mechanical measurements are used to 
determine the constitutive parameters that describe a material (Walters 1975; Macosko 
1994). Rheo-optical methods – at least in the narrow sense of the word – were 
introduced in the rheological community in the 1950’s to complement these traditional 
mechanical measurements. The initial aim of the optical methods was the direct 
measurement of stresses in the material (Lodge 1955; Philipoff 1956; Janeschitz-Kriegl 
1983). Compared to the mechanical approach, the rheo-optical measurements have 
much shorter response times and higher sensitivities than the mechanical counterparts. 
In addition, they allow us to obtain the spatial distribution of the stresses, rather than the 
bulk response as measured by the mechanical approach. In the last two decades, the 
applicability of the rheo-optical methodology has broadened its horizon. It is now 
regarded as an approach that is used to understand the often complex rheological 
behaviour of a material based on its microstructural evolution (Fuller 1995; Sondergaard 
and Lyngaae-Jörgensen 1995; Wagner 1998). Examples of such complex materials – in 
which structures on the microscopic scale are used to improve their functionality – are 
ample in modern day life. They encompass a multitude of products such as for instance 
emulsions, particle filled materials, polymers with finely tuned molecular architectures, 
polymer blends, and many more (Larson 1999). For these materials, a mere mechanical 
characterization is not sufficient to clarify the complex relation between the rheological 
behavior and flow-induced changes of the microstructure. In order to optimize the 
formulation – and hence the performance – of such multiphase materials, techniques are 
required that are able to follow the morphology development during the processing step. 
The latter is not straightforward since it requires a high time resolution in order to 
obtain an in-situ analysis of the structure rather than a post-mortem picture of the 
morphology as for instance obtained by classical bright field microscopy or electron 
microscopy methods. In addition, time-resolved measurements of the structure are 
needed in order to capture the often anisotropic structural evolution. Although these 
requirements are not easy to achieve, various experimental techniques have already 
been coupled with flow geometries. As such combinations of flow (rheo-) with 
microscopy (Alderman and Mackley 1985; Larson and Mead 1992; Vermant, 
Moldenaers et al. 1994; Guido, Greco et al. 1999), with scattering at various length 
scales (light, X-ray, neutrons) (Koga, Hashimoto et al. 2008), with polarimetry, with 
NMR (Callaghan 2006), with dielectric measurements (Boersma and Van Turnhout 
1999), ... are nowadays known as established experimental techniques.  
 
In this overview, we will concentrate on techniques that use visible light to investigate 
structural changes during flow. These methods are based either on changes in the 
properties of the transmitted light (polarimetry) or on the spatial dependence of the 
scattered light (light scattering). Both techniques are remarkably complementary as will 
be explained further in this text. Polarimetry measures properties of the transmitted light 
that is affected by phenomena that occur at all length scales present in the material. On 
the contrary, light scattering at small angles is limited to structural phenomena at well-
defined length scales, typically of the order of magnitude of the wavelength of the used 
light. In this chapter, the basic principles of the methods will be explained. In addition, 
some case studies will be presented to highlight the ability of these methods. Finally, the 
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advantages of the presented rheo-optical approach will be compared with direct 
structure visualization methods. 
 
2. Polarimetry 
 
2.1. Definitions 
 
Polarimetry refers to the measurement of linear birefringence and linear dichroism, 
based on the interaction of polarized light with matter (Azzam and Bashara). Light is an 
example of electromagnetic radiation. Here we will only consider the electric field to 
describe its interaction with matter. The electrical field of a plane wave that propagates 
parallel to a vector k  can be described by: 
 

 
0

2exp .E E i nu x tπ ω
λ

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (1) 

 
in which 

0

E  is the complex amplitude, n  the refractive index of the material, and λ and 

ω respectively the wavelength and frequency of the light. The wavevector k  is defined 
as: 
 

2k nuπ
λ

=  (2) 

 
When such an electrical field propagates through matter, it interacts with its electrons. 
This can lead for instance to a decrease in propagation speed as compared to the speed 
in vacuum, and is determined by the real part of the refractive index n′  (see also Figure 
1). Likewise, the amplitude of the electrical field might be attenuated, which can be 
described by the imaginary or dissipative part of the refractive index n′′ .  
 

 
 

Figure 1. Interaction of polarized light with matter: effect of the real and imaginary part 
of the refractive index. 
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When a material is deformed by a shear flow or an extensional flow field, the refractive 
index of the material will not necessarily be described anymore by a scalar quantity. 
When the optical properties become anisotropic, which means that they become 
different along the different principal axes of the material, a refractive index tensor 
n n in′ ′′= + will become necessary to describe the optical response. When the material 
becomes anisotropic, the principal values of the real part of this tensor 

1 2 3

( , , )n n n′ ′ ′ (and the 
complex part 

1 2 3

( , , )n n n′′ ′′ ′′ can be different). Using these notations, the linear birefringence 
n′Δ  is defined as the difference between the real parts of the refractive indices along the 

principal axes. Likewise, for the dissipative part, linear dichroism n′′Δ  is defined as the 
difference between the imaginary parts of the refractive indices. For instance, when 
considering the principal directions 1 and 3, the linear birefringence 

13

n′Δ  and linear 
dichroism 

13

n′′Δ  are defined as: 
 

13 1 3

n n n′ ′ ′Δ = −  (3) 
 

13 1 3

n n n′′ ′′ ′′Δ = −  (4) 
From a physical point of view, there are two fundamental contributions to both the 
birefringence and the dichroism: an intrinsic and a form contribution (Peterlin 1976; 
Onuki and Doi 1986; Fuller 1990). In the case of polymeric systems, the intrinsic 
birefringence is directly related to the orientation of macromolecules and its value 
depends on the anisotropy of the polarizabilities along the principal axis of the 
molecules. The form contribution, however, appears when a large difference in 
polarizabilities is present between oriented objects and the surrounding matrix materials 
such as the matrix fluid in immiscible blends, or the solvent in the case of solutions. In 
contrast to the intrinsic contribution to the birefringence, this form contribution is 
related to the shape of objects during flow and hence gives complementary information 
to the intrinsic birefringence. Unfortunately, it is not always easy to deconvolute both 
effects which makes the use of birefringence to determine form effects rather difficult 
(see also section Section 2.3.2 in which a case-study is presented where such a 
separation is possible).  
  
Along the same line of thoughts, the form contribution of the dichroism – called the 
conservative dichroism – is also related to the global shape of objects (Meeten 1981). 
This is due to the fact that this conservative dichroism is determined by the anisotropic 
light scattering of the objects under investigation. The intrinsic contribution to the 
dichroism originates from the spectroscopic absorption of the light by specific chemical 
bonds within the sample. Because this contribution depends on the wavelength of the 
light – the form contribution is less sensitive to that – a proper selection of the 
wavelength allows for the separation of both effects. Hence, the linear conservative 
dichroism becomes an interesting tool to investigate effects on the form and 
organization of flow-induced structures. 
 
2.2. Experimental Techniques  
 
Linear birefringence is caused by a difference in propagation speed when the electrical 
field is directed along different principal axes of the material. In purely birefrigent 
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materials, this results in an optical retardation that emerges as a phase difference 
between two optical paths. This retardation induces a modification from a linearly 
polarized state to an elliptical polarization. Likewise, in purely dichroic materials, the 
two components of the polarized light are still in phase but one of the components is 
attenuated more than the other. When a material is both birefringent as well as dichroic, 
the optical analysis becomes more complex. 
 
The techniques to measure birefringence and dichroism are based on the 
characterization of the polarization state of light. From a mathematical point of view, 
the Jones and Muller calculus provides a simple matrix-based approach as explained for 
instance by Azzam and Bashara or in the monologue by Fuller.  
 

 
 

Figure 2. Simple experimental method to measure birefringence and dichroism. Light is 
sent through a polarizer oriented at zero degrees with respect of the reference laboratory 
frame. Next, the light passes through the sample oriented at a certain angle with respect 
to the reference frame. The birefringence of the sample changes the polarization state of 

the light from a planar to an elliptical state.The dichroism induces a polarization 
dependent attenuation of the light. Finally, a second polarizer (analyzer) oriented at 90° 

is used. 
 
Several designs of optical arrangements are possible to measure optical anisotropies. 
The simplest arrangement is shown in Figure 2. In this example, a coaxially birefringent 
and dichroic sample (oriented at an angleθ ) is inserted between crossed polarizers. 
Based on the Jones and Muller calculus, the transmitted intensity from this optical train 
is calculated to be:  
 

( )( )20 sin 2 cosh cos
4
I

I θ δ δ′′ ′= −  (5) 
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Here 
0

I  is the intensity of the incident beam, and  δ ′  and δ ′′  are the optical retardation 
and the extinction that can be converted to the birefringence and the dichroism as 
defined by: 
 

2
n

d
δ λ
π
′

′Δ =  (6) 

 

2
n

d
δ λ
π
′′

′′Δ =  (7) 

 
with d the thickness of the sample. Such a crossed polarizer set-up has been used 
extensively for birefringence measurements. However, as Eq. (5) indicates, a number of 
shortcomings can be observed in this simple method. First of all, the measured intensity 
is affected by both the birefringence and the dichroism and a proper birefringence 
measurement will only be possible if the dichroism can be neglected. In addition, if both 
the birefringence and orientation angle θ  are unknown, this single measurement is 
clearly not sufficient to determine them simultaneously.  
  
An additional drawback of the method proposed above comes into play when one wants 
to observe the birefringence and dichroism in transient flow fields due to the lack of 
time resolution. In order to solve this problem, faster polarization modulation methods 
can be used where a regular time-dependent variation of the properties of the incident 
light is induced. Such a modulation can be performed either by the rotation of an optical 
element with fixed optical properties, or by the modulation of the optical properties of 
an element with fixed orientation. A typical experimental setup is shown in Figure 3. 

 

 
 

Figure 3. Example of an optical set-up to measure birefringence. A polarization state 
generator (PSG) is used after which the light is sent through the sample. A polarization 
state analyzer (PSA) is used to analyze the transmitted light. A photodiode (PD) is used 

to capture the intensity of the light. 
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Light emitted by a laser source (which is typically a helium-neon laser with a 
wavelength of 632.8 nm) is polarised by a Polarization State Generator (PSG), passes 
through the sample and is analyzed by a Polarization Stage Analyzer (PSA) that 
contains a photodiode (PD) to measure the transmitted intensity. It is essential in these 
polarimetric methods to choose the proper optical components in order to highlight the 
desired information present in the sample. 
 
A possible set-up to measure birefringence and/or dichroism consists for instance of a 
polarizer (P) oriented at 0° (with respect to the laboratory reference frame), followed by 
a rotating half-wave plate that rotates at a frequency ω . Based on the Jones and Muller 
calculus, one can calculate that the light that emerges from this PSG will be polarized at 
a frequency of 4ω . This high modulation frequency (~1-10 kHz depending on the PSG, 
with the highest modulation frequencies attained by a photo-elastic modulation) allows 
us to follow fast transient structural rearrangements as they may occur in a flowing 
system.  
 
In the case of birefringence measurements, the PSA consists of a quarter wave plate and 
a polarizer oriented at 90° with respect to the reference plane. In the case of small 
anisotropies, the transmitted intensity is calculated to be (see the monograph by Fuller 
for a detailed coverage of these calculations): 
 

( ) ( )0 1 cos 2 sin sin 4 sin 2 sin cos 4
4
I

I t tθ δ ω θ δ ω′ ′= − +⎡ ⎤⎣ ⎦  (8) 

 
As can be seen from this equation, the harmonic content of the signal allows to retrieve 
the desired birefringence via the retardation δ ′ and corresponding orientation angle θ . 
This can be done, for instance, by a digital analysis of the intensity by means of a fast 
Fourier transformation or by using lock-in amplifiers that are set at the modulation 
frequency. By using the latter approach, the amplitudes of 

1

sin R  and 

2

cos R contributions of Eq. (8) can be isolated: 
 

( )
1

cos 2 sinR θ δ ′= −  (9) 
 

2

sin 2 sinR θ δ ′=  (10) 
 
Based on these amplitudes, the values of the birefringence and the orientation angle can 
then be calculated as: 
 

2 2

1 2

arcsin
2

n R R
d

λ
π

⎡ ⎤′Δ = +⎣ ⎦  (11) 

 

2

1

1 arctan
2

R
R

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (12) 
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In the case of dichroism measurements, the PSA consists of only a photodiode without 
any additional optics. The analysis to retrieve the dichroism is similar and can be found 
in the monograph by Fuller.  
 
Under flow conditions, the orientation angle θ is defined relative to the principal 
directions of the flow. In the case of simple shear flow (see Figure 4), two approaches 
are possible. When the light is sent parallel to the velocity gradient direction (which is 
typical when using a parallel plate setup), only a projection of the structures under 
investigation is observed. However, in order to obtain the orientation angle in the flow 
field, one needs to send the incident light along the vorticity axis. In this case, a Couette 
(concentric cylinder) geometry as depicted in Figure 3 is appropriate. 
 

 
 

Figure 4. Orientation of a polymeric chain during simple shear flow. v corresponds to 
the flow direction, ω  is the vorticity direction. 

 
- 
- 
- 
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