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Summary 
 
The chapter describes basic issues in the selection, design and operation of multiphase 
reactors. Industrial applications of multiphase reactors are discussed. The up-to-date 
information on current research and future developments in the field is provided. 
 
1. Introduction 
 
Chemical reactors form the heart of any chemical plant. Here, the raw materials are 
chemically converted into the final products. On the efficiency of this conversion 
depends not only the economy but also the environmental performance of the entire 
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production process. Contrary to some common misconceptions, most industrially 
important chemical reactions are not carried out in a single phase. Vast majority of those 
reactions involve two or more phases, including liquids, gases and/or solids, in contact. 
The phases can play various roles in the reactor, not only as the source or storage of the 
reactants to be converted but also as catalysts for the reactions or simply as means to 
improve mixing or transport processes in the reactor. 
 
All those roles of the phases are discussed in this chapter. Section 2 provides the reader 
with basic understanding of the phase contacting in the chemical reactors. In Section 3 
some fundamental design issues in multiphase reactors are discussed, including the 
selection of the optimum type of multiphase reactor, based on the assumed selection 
criteria. In Section 4 basic types of multiphase reactors are described. Those basic types 
of multiphase reactors and the corresponding phase contacting patterns are listed in 
Figure 1. Finally, Section 5 brings up-to-date information on current research 
developments and future outlook in the field of multiphase reactors. 
 
 

 

 
 

Figure 1. Most important types of multiphase reactors and phase contacting patterns 
discussed in this chapter. 

 
2. Fundamentals of Phase Contacting in Chemical Reactors 
 
Basically, in single-phase reactors the only physical process influencing the efficiency 
of chemical conversion is the mixing of reacting components with each other and 
sometimes also with a homogeneous catalyst. In multiphase reactors the situation is 
much more complex. Here, not only the reacting components must be efficiently mixed, 
but also conditions have to be created to transport those components efficiently across 
the interfaces between the phases, such as surface of a gas bubble or a surface of a solid 
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catalyst particle. 
 
The most important mass transfer theory in chemical engineering, the so-called “film-
theory” represents the barrier to mass transport across the interface by a thin film, in 
which the concentration of the transported components drops due to diffusional 
resistance. For instance, in contacting gas phase (e.g. in form of a bubble) with liquid, 
two diffusional films on both sides of the interface can be distinguished, as it is shown 
in Figure 2. 
 
In the film theory, the rate, at which component “ i ” is transported from the bulk of one 
phase to another can be generally expressed by the following equation: 
 

c. .i iN k a c= Δ  (1) 
 
where  
 

iN : mass transfer rate [mol/m3/s] 

ck : mass transfer coefficient [m/s] 
a : specific interfacial area [m2/m3] 

iCΔ : concentration difference [mol/m3] 
 

 
 

Figure 2. Mass transfer films at the gas-liquid interface. Concentration of component 
“ i ” drops as a result of diffusional resistance. 
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The mass transfer coefficient depends primarily on the hydrodynamic conditions and the 
physico-chemical properties of the phases involved.  The engineering formulas 
correlating the mass transfer coefficients with system hydrodynamics and physico-
chemical properties are usually expressed by the dimensionless numbers in general 
form: 
 

. .n mSh A Re Sc=  (2) 
 
where 
 

c is Sherwood Number =( / )
 is Reynolds Number =( / )
 is Schmidt Number =( / )

i

i

Sh K L D
Re u L
Sc D

ρ μ
μ ρ

 

 
L  denotes the characteristic length (e.g. diameter), 

iD  – diffusivity, u  – velocity, μ  
and ρ  – fluid dynamic viscosity and density, respectively. 
In gas-liquid or liquid-liquid systems also the specific interfacial area depends on 
system hydrodynamics and physico-chemical properties. The interfacial area between 
fluid and solid is obviously dependent on the size and geometrical form of the solid 
phase.  
 
As one can see from the above considerations, basic steps that can be undertaken in 
order to improve the mass transfer rate from one phase to another include: 
 
• In fluid-fluid systems: intensify hydrodynamics to increase mass transfer coefficient 

and specific interfacial area; 
• In fluid-solid systems: intensify hydrodynamics to increase mass transfer coefficient 

and modify size/form of the solid phase to enhance interfacial area; 
• In all systems: increase the concentration difference (for instance by increasing the 

partial pressure of the component “i” in the gaseous phase if the transport is to take 
place from gas to liquid).  

 
The above briefly described issues are obviously of fundamental importance to the 
efficiency of the multiphase reactor operation. If the reaction kinetics is fast compared 
to the rate, at which one or more components are transported from the given phase to the 
reacting phase, one speaks about a mass transfer-limited reaction regime. Often used 
terms to describe the degree of mass transfer-limitation in a multiphase reacting system 
are the so-called effectiveness factors for fluid-solid systems and enhancement factors 
for gas-liquid systems. For instance, the effectiveness factor describing the limitation of 
a gas-solid catalytic reaction caused by the diffusion resistance inside the catalyst pellet 
is defined as: 
 

                                       (without diffusion resistances)

reaction rate observed
reaction rate under conditions of pellet surfaceη =  (3) 

 
As one can expect, such defined effectiveness factor is strongly dependant on the ratio 
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between the kinetic reaction rate constant and the effective diffusivity in the catalyst 
pellet. This strong dependence for a first-order reaction in a flat-plate geometry of 
catalyst pellet is shown in Figure 2. Here φ  denotes the so-called Thiele modulus 
defined as: 
 

( )1/ 2
A e/L k Dφ = ⋅  (4) 

 
where L  denotes the characteristic length (e.g. plate thickness or particle diameter), Ak  
is the reaction rate constant and eD is the effective diffusivity in the pellet. 
 
The above figure let us see clearly how an increase of the plate thickness (or, similarly, 
catalyst pellet diameter) may result in a slow-down of the reaction in the catalyst. 
 
Similarly, in gas-liquid systems the concept of so-called “effectiveness factor” has been 
introduced. The effectiveness factor is defined as: 
 

 
 

Figure 3. Gas-solid catalytic reaction. Dependence of the effectiveness factor on Thiele 
modulus for first-order kinetics and flat-plate geometry. 

 
rate of reaction of flux A

maximum rate of the mass transfer of A through the liquid film
E =  (5) 

 
For instance, for a fast irreversible reaction taking place in the liquid mass transfer film 
only, the enhancement factor is expressed as a function of the so-called Hatta number 
as: 
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tanh( )
HaE

Ha
=  (6) 

 
where 
 

L A AL( / )Ha k Dδ=  (7) 
 
In the above equation Lδ  denotes the thickness of the liquid mass transfer film. 
 
In reacting systems involving gas, liquid and solid phases the mass transfer issues 
become even more complex. A reactant contained in the gaseous phase has to get across 
two interfaces and diffuse into the solid catalyst, where the chemical reaction takes 
place (Figure 4). 
 

 
 

Figure 4. Mass transfer steps in gas-liquid-solid reactors. 
 
Full analysis of the mass transfer limitations in other multiphase systems exceeds the 
scope of this chapter. Detailed information can be found in literature references listed at 
the end of the chapter. 
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