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Summary 
 
A review is given of the historical development of experimentation in the modeling of 
hydraulic flow, form and surface resistance and sediment transport. The basic theory of 
dimensional analysis, and the use of nondimensional flow parameters, to represent flow 
phenomena, are described. With a sound theoretical basis, such as the use of process 
functions, hydraulic modeling is employed to provide information regarding open 
channel flow, and these techniques are extended to analyze flow behavior in movable 
bed models of sediment transport. Precautions against excessive scale reduction are 
advised due to scale effects that may invalidate the results. The use of vertically 
distorted models is also discussed, as well as the prediction of erosion and scour depths 
by means of model studies. Sediment transport, grain-size modeling and river training 
are also discussed. Future issues in the direction of combining physical models with 
theoretical analysis, so-called hybrid modeling, are suggested. Some considerations on 
the near-field and far-field mixing processes in effluent disposal are also given. The 
future scenario is that the best answers would come from experimenters and 
theoreticians combining their efforts towards developing better understanding of the 
underlying processes, in analyzing flow behavior. 
 
1. Introduction 
 
In most cases of fluid motion in hydraulics, the complexity is such that the strict 
application of basic equations is only possible in relatively simple geometry. Analytical 
treatment requires the situation to be idealized to some extent, and the effect of the 
consequent simplifications can only be tested by experiment. As a result, the science of 
hydraulics has been marked by intense development of experimental methods. 
Experimental observation and measurements, and consequent conceptual deductions, 
have been at the heart of many of the great discoveries in fluid mechanics and 
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hydraulics. Along with the experimental study of basic fluid phenomena, the science 
and art of physical hydraulic modeling have developed. 
 
The experiment offers a classical way to study real flows. Experiments at the proper 
scale have the advantage that they do not use simplifying assumptions, and can 
precisely predict the properties and characteristics of a real flow situation. However, 
with high-level computing power now routinely and cheaply available, the emphasis on 
numerical solutions of fluid flow problems is ever growing. Nevertheless, experimental 
hydraulics continues to flourish because it is based on the behavior of real fluids. The 
experiment should be seen as a full partner with numerical methods in developing 
understanding and predictive ability for hydraulic problems. 
 
Model flows at small scale have similar properties to those of the prototype, thereby 
permitting an exploration of natural flows. In addition, laboratory flows in pipes, 
channels and tanks are studied in order to gain insight into the motions and forces in 
basic flow situations. However, this similarity is never complete, and needs to be 
carefully evaluated by the research engineer. In some situations where scale effects may 
prevent adequate simulation of prototype behavior, the necessary understanding may 
only be obtained by the study of prototype situations (see chapter Fluid Mechanics). 
 
This article is concerned with the science and art of determining the behavior of 
prototype hydraulic situations using experiments. The emphasis herein is on the 
application of scale models since they normally represent the most convenient way of 
predicting the performance of a specific hydraulic situation under a large range of flows 
and other variable conditions. The flow situations encountered in practice are often 
notoriously difficult to measure with instruments. However, new acoustic and optical 
measurement methods are capable of providing accurate data without adversely 
affecting the flow field in the experiment. 
 
The subject of instrumentation in fluid flows is not dealt with in this article. New 
instruments and new capabilities are rapidly evolving in parallel with the evolution of 
high-technology electronics, optics and computer technology. Information on these 
developments is best obtained from the many companies working in this area and from 
such specialized periodicals as the Journal of Scientific Instrumentation. 
 
This article examines the development of physical modeling and identifies outstanding 
issues which remain to be solved. The field of physical modeling is vast, both with 
regard to the range of problems tackled and the breadth of literature in the field. 
Excellent reviews and texts include those of Martens, Kobus, and Novak and Cábelka. 
Due to the vastness of the field, it is only possible to cover selected topics, and 
inevitably, these are largely confined to the author’s range of interest and experience. 
 
To set the scene, a brief history of hydraulic modeling is first presented. Modeling 
criteria are then reviewed. In particular, the need to supplement pure dimensional 
analysis with process functions, based on sound analytical concepts, is emphasized. 
Attention is then focused on scale effects and their management. Some outstanding 
issues for further research are then identified and conclusions drawn. 
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2. Brief History of Hydraulic Modeling 
 
The history begins with Leonardo da Vinci (1452–1519) whose accomplishments in 
many fields dwarfed those of his contemporaries. He is well known for his contributions 
to Italian drawing, painting and sculpture, and showed genius in the areas of music, 
natural philosophy, anatomy, botany, geology, mechanics, architecture, and 
engineering. He left over five thousand pages of sketches and comments, moving 
without system from subject to subject. The task of sorting and interpreting his records 
was made difficult by his habit of writing left-handed, in mirror image, and often from 
back to front as described by Rouse and Ince. 
 
Da Vinci advocated the study of hydraulics in an experimental manner. His basic 
premise is quoted as “Remember when discoursing on the flow of water to adduce first 
experience and then reason.” Among phenomena which he observed and described are 
the velocity distribution in a vortex; the profiles of free jets; the formation of eddies at 
abrupt expansions and in wakes; the propagation, reflection, and interference of waves; 
and the hydraulic jump. 
 
Isaac Newton (1642–1727) is generally credited with the first theoretical treatment of 
similarity criteria of mechanical processes under different scales. He also formulated the 
rule of corresponding velocities representing a statement of the ratio of velocities 
created by the action of gravity in similar motions but at different scales, as stated by 
Ivicsics. 
 
John Smeaton (1724–1792), the first of the great English engineers, conducted the first 
known scale model experiments. He carried out tests aimed at determining the 
performance of water wheels and windmills. His introductory remarks to a classic paper 
presented to the Royal Society in 1759 are worth quoting in full: 
 
What I have to communicate on this subject was originally deduced from experiments 
made on working models, which I look upon as the best means of obtaining the outlines 
in mechanical inquiries. But in this case it is very necessary to distinguish the 
circumstances in which a model differs from a machine at large; otherwise a model is 
more apt to lead us from the truth rather than towards it. Hence the common 
observation, that a thing may do very well in a model that will not answer in large. And, 
indeed, though the utmost circumspection be used in this way, the best structure of 
machines cannot be fully ascertained, but by making trials with them, when made of 
their proper size. 
 
The sentiments expressed of the need to be aware of scale effects and to verify model 
performance against prototype behavior are as valid 240 years later. In 1852, Ferdinand 
Reech postulated that, in the study of the dynamic resistance of vessels, use could be 
made of small-scale models, multiplying observed model velocities by the square root 
of the length scale to predict the corresponding prototype values. The same deduction 
was drawn by Bourne, also in 1852, applied to the study of screw propellers. This 
hypothesis is the heart of the Froude criterion of similarity, although predating Froude’s 
work by some twenty years. 
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Froude worked largely in the development of towing tank techniques for the testing of 
model ships. He used Reech’s criterion for scaling up model velocities to prototype 
values, without, however, acknowledging Reech’s work. Froude did, however, correctly 
identify a scale effect due to surface resistance, explaining it in terms very similar to 
current understanding of boundary layer theory. It is an irony of hydraulics that 
Froude’s name is associated with a law of similarity which he did not develop, while his 
great contributions to boundary layer research are today largely unacknowledged. 
 
The earliest known mobile bed river model was built in 1875 by Louis Fargue, 
according to Ivicsics, while investigating river regulation measures for the Garonne 
River at Bordeaux. His experiments were rather crude in that the depth and time scales 
were arbitrarily chosen. It was left to Osborne Reynolds to correlate these parameters 
properly during his experiments in 1885 on a tidal, mobile bed model of the River 
Mersey. The work of Reynolds and his successor, Vernon-Harcourt, is largely 
recognized today as the genesis of mobile bed modeling. Vernon-Harcourt wrote that: 
 
If I succeed in demonstrating with the model that the originally existing conditions can 
be reproduced typically; and if, moreover, by placing regulating works in the model, the 
same changes can be reproduced that were brought about by the training works actually 
built, then I am sure that I can take the third and most important step, namely, of 
investigating, with every promise of success, the probable effect of the projects that 
have been proposed. 
 
This hypothesis remains as the most important underlying principle of mobile bed 
modeling. 
 
With the foundations of open channel modeling established, several major modeling 
laboratories were set up, many of which continue to operate today. The first river 
hydraulics laboratories, set up as permanent installations, were established in Germany 
by Engels in 1898 and Rehbock in 1901, according to Kobus. 
 
The further widespread development of hydraulic laboratories, especially for the design 
of hydraulic structures and river training schemes, was the predominant phenomenon of 
early twentieth century hydraulics. In addition to the Froude number, other 
nondimensional invariant numbers, such as the Reynolds and Weber numbers, had been 
postulated from physical arguments based on Newtonian physics. The general modeling 
requirement for dynamic similarity was that these numbers should be the same in model 
and prototype. 
 
A more formal approach to the determination of governing invariant parameters 
emerged early in the twentieth century with the development of dimensional analysis. 
This work was popularized by Buckingham, but as described by Rouse, it was largely 
based on earlier work by Fourier, Vaschy, Riabouchinsky, and Rayleigh. The basic 
principle of the so-called Buckingham Pi-theorem is that correct identification of the 
fluid and flow properties associated with a particular phenomenon leads to the 
formulation of nondimensional numbers which can then be used as the basis of model-
prototype similitude. 
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The Buckingham Pi-theorem is very easy to apply, involving only the application of 
some simple mathematical rules. However, its correct application involves a sound 
understanding of the physics of the problem under study to ensure that all necessary 
fluid and flow properties are included. Even then, however, as will be shown in the 
following section, dimensional analysis is of little use to the modeler without specific 
hydraulic information encapsulated in so-called process functions. 
 
The design of the early mobile bed models developed by Fargue, Reynolds and Vernon-
Harcourt was largely intuitive. Provided that the sediment in the model moved, it was 
assumed that the response of the model bed to spatial and temporal changes in velocity 
would simulate—at least qualitatively—the response of the prototype to similar 
changes. In 1936, Shields published his classic work on the inception of sediment 
transport and this served as the impetus for accelerated research and understanding of 
many aspects of sediment transport. In the context of this article, Shields’ work led to 
the specific formulation of model design and result interpretation laws for mobile bed 
models. These are discussed further in the following section. 
 
Over the last fifty years of the twentieth century, physical models have played an 
increasing role in the design of hydraulic structures, river training works, and coastal 
works. This has been heightened by the development of sophisticated instrumentation 
for the simultaneous and highly accurate measurement of model parameters such as 
velocity, depth, and flow rate. 
 
These advances, however, can have the effect of luring investigators into a false sense 
of security regarding their own studies. If the model design is based on faulty concepts, 
then the use of highly sophisticated instrumentation and measurement techniques will 
only improve the accuracy of the wrong predictions. The issue of sound model design is 
the focus of the following sections of this article. 
 
3. Model Criteria—Dimensional Analysis and Process Functions 
 
As an example of the use of dimensional analysis, and to illustrate its insufficiency on 
its own, the simple case of flow in a fixed-bed open channel is first considered. 
Adopting the mantle of dimensional analysis, the controlling parameters and their 
dimensional units are first identified as follows: 
 
– Flow velocity, V,    L/T 
– Channel width, W    L 
– Channel depth, y    L 
– Channel length (distance along), l  L 
– Fluid density, ρ    M/L3 
– Time, t      T 
– Mass, m     M 
– Fluid viscosity, μ    M/(LT) 
– Fluid surface tension, σ,   M/T2 
– Surface roughness, ε    L 
– Gravitational acceleration, g   L/T2 
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– Slope (vertical/horizontal), S   L/L 
– Wetted perimeter, P    L 
– Cross-sectional area, A   L2 
– Hydraulic radius, R (=A/P)   L 
– Discharge, or Flow rate, Q (=AV)  L3/T  
–  
 
where L = length unit, M = mass unit, and T = time unit. Dimensional analysis enables 
the grouping of these parameters in a number of ways. Adopting V, y, and ρ as the 
repeating variables, a legitimate set of five nondimensional variables can be developed 
as follows: 
 

2 2
, , , ,V V Vy Wf

gy y yy

ρ ε
σ μρ

⎛ ⎞
⎜ ⎟ =
⎜ ⎟⎜ ⎟
⎝ ⎠

0           (1) 

where ρ, σ, μ, ε are as defined above.Strict similitude would only be possible if all five 
nondimensional groups in Equation (1) are identical in model and prototype. It can 
quickly be established, however, that this is not possible, especially if the same fluid is 
used in model and prototype, unless the scale ratio is unity, in other words a full-scale 
model. To move forward from this point, use must be made of physical understanding 
and of a process function derived as follows: 
 
The first term in Equation (1) represents the ratio of inertial forces to gravitational 
forces. Since the phenomenon under consideration is gravity driven, this parameter must 
be retained. Requiring equality of the first term at homologous points in the model and 
the prototype leads to the well-known Froude law of modeling, appropriate to open 
channel flows: 
 

V yλ λ=            (2) 
 
where λ means “the scale of” (model to prototype). 
 
The second term in Equation (1) is a Weber number, representing the ratio of inertial 
forces to surface tension forces. This ratio increases with model size because the inertial 
forces act on a volume whereas the surface tension forces act on an area. Thus the 
surface tension forces become negligible, provided the model is reasonably large, and 
the second term can be disregarded. 
 
Turning now to the third term in Equation (1), a Reynolds number, Re, is identified, 
representing the ratio of inertia forces to viscous forces. In the context of an open-
channel flow, viscous forces affect the surface resistance, apparently requiring Reynolds 
number equality between model and prototype for full similarity. 
 
If the same fluid is used in model and prototype, Reynolds number equality at 
homologous points would require that 
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1V
y

λ
λ

=            (3) 

 
and this condition is clearly incompatible with Equation (2). Indeed, it is readily shown 
that, if the velocity scale is based on Equation (2), 
 

3
2Re yλ λ=            (4) 

 
This situation is resolved by making use of a process function for flow resistance which 
links the friction factor, Reynolds number, and relative roughness through the well-
known Colebrook-White equation. This function is conveniently plotted as a Moody 
diagram and is reproduced in Figure 1 (see chapter Fluid Mechanics in Pipelines). 
 
The equation for the friction factor, the ordinate of Figure 1, shows that the Froude 
similitude criterion given by Equation (2) can only be satisfied if the friction factor is 
the same in model and prototype. Superimposed on Figure 1 is a hypothetical range of 
prototype Reynolds numbers and a corresponding range of model operation, assuming a 
model scale of 1:25. For the example given, it is evident that equality of friction factor 
between model and prototype can only be obtained if the model is relatively smoother 
than the prototype. 
 
However, it is noted, further, that this equality is only possible for one particular 
operating condition (characterized by the Reynolds number). For other operating 
conditions, the model friction factor will be different from that in the prototype, 
introducing a friction scale effect. The scale effect can be calculated, however, and 
model results adjusted when scaling up to prototype values. Figure 1 also demonstrates 
that if the prototype is relatively smooth, it may not be possible to build a model with a 
low enough friction factor (f) to match that of the prototype. In this situation, the higher 
model friction factor may be considered as at least being conservative with respect to 
predicted flow depths, or again, the scale effect may be calculated and the predicted 
prototype values adjusted. 
 
The discussion above has demonstrated that dimensional analysis is insufficient on its 
own to provide a basis for the modeling of open channel flow. Indeed, if dimensional 
analysis was solely relied upon, the conclusion would be drawn that accurate modeling 
is not possible. It is only by adding knowledge of flow resistance and its corresponding 
process function to dimensional analysis that an appropriate modeling procedure is 
identified. Other examples of the necessity for process functions, in addition to 
dimensional analysis, for physical modeling of weir flows and vortex drop shafts, have 
been discussed by Ackers. 
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Figure 1. Process function diagram for friction, showing the relationship  
between friction factor and Reynolds number 

 
The above presentation applies to undistorted models only—i.e., those for which the 
horizontal and vertical scales are identical. Undistorted models are common in 
hydraulic structure investigations, but are often impractical for large rivers because of 
their typically large width to depth ratios. A typical river may have a width of five 
hundred meters and a depth of perhaps two meters. The corresponding undistorted 
model of a scale of, say, 1:250 would be two meters wide and eight millimeters deep. 
Due to surface tension effects and the likelihood of laminar flow, the model flow 
behavior is likely to be totally different in character from that of the prototype. 
 
This situation is resolved by utilizing a vertical scale which is larger than the horizontal. 
The Froude relationship is still expressed in the form of Equation (2), where, however, 
λy represents the vertical scale because it is vertical, rather than horizontal, distances 
which measure the effect of gravity on velocity. 
 
With reference to Figure 1, the expression for head loss, hL, is: 
 

2

4 2L
L Vh f
R g

=            (5) 

where R is the hydraulic radius, as defined ahead of Equation (1). 
 
Rearrangement and expression in terms of scale ratios, λ, yields for the scale ratio of the 
slope, S: 
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measurements, the corresponding prototype behavior may be more precisely 
determined. 
 
In looking to the future, several areas for potential development have been identified. 
The common thread through all of these is that the answers will come from 
experimenters and theoreticians working together to develop the necessary process 
functions to describe the underlying phenomena. These process functions will be used 
to guide modeling practice and to understand the role and magnitude of scale effects. 
 
Glossary 
 
Aggradation: Build-up of bed sediment upstream of an obstruction in a river 

course. 
Bathymetry: The mapping of the depth contours of a water body. 
Boundary layer: Slow moving fluid close to the solid boundary. 
Cut-throat 
flume: 

A water channel with converging, then diverging, sides (from 
upstream to downstream), generally shorter than a full-length 
Parshall or Venturi flume; critical flow depth occurs near the 
downstream end of this type of flume. 

Degradation: Erosion and general lowering of a river bed downstream of an 
obstruction. 

IAHR: International Association for Hydraulic Engineering and Research 
Nappe 
trajectory: 

The free-falling profile of the water discharged from a spillway or 
through an orifice-type outlet. 

Pressure head: The hydrostatic energy of a water column expressed in meters 
height. 

Process 
function: 

Relationship between one property of the flow, such as the frictional 
resistance coefficient, as a function of another, nondimensional flow 
parameter, such as the Reynolds Number. 

River training: Confining river banks by means of levees or berms. 
Scale effect: Errors in flow simulation due to reduced scales in models. 
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