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Summary 
 
1. Introduction to Reservoir Simulation 
 
A petroleum reservoir is an underground porous medium in which oil or gas or both are 
trapped structurally or/and stratigraphically. Fluid flow in such a porous medium is very 
complex phenomena. Generally, analytical solutions to mathematical models are only 
obtainable after making simplifying assumptions in regard to reservoir geometry, 
properties and boundary conditions. However, such simplifications are often invalid for 
most fluid flow problems. In many cases, it is impossible to develop analytical solutions 
for practical issues due to the complex behaviors of multiphase flow, nonlinearity of the 
governing equations, and the heterogeneity and irregular shape of a reservoir system. As 
a result, these models must be solved with numerical methods such as finite difference 
or finite element. Reservoir simulation provides numerical solutions to hydrodynamic 
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problems of fluids (oil, gas and water) in petroleum reservoir-well systems on a digital 
machine. Today, it has become a standard tool in petroleum engineering discipline and 
been widely used for solving a variety of fluid flow problems involved in recovery of 
oil and gas from the porous media of reservoirs. 
 
Typical application of reservoir simulation is to predict future performance of the 
reservoirs so that intelligent decisions can be made to optimize the economic recovery 
of hydrocarbons from the reservoir. Reservoir simulation can also be used to obtain 
insights into the dynamic behavoir of a recovery process or mechanism. 
 
In petroleum engineering area, the numerical solution through the reservoir simulators is 
often the only way to obtain meaningful and reliable solutions for most actual cases due 
to extreme complexity of reservoir systems. The numerical solution provides results at 
discrete points in spatial and temporal domains. Development of a reservoir simulator 
for different types of reservoir-well systems and recovery processes requires substantial 
background in mathematics and applied science, which starts with establishing the finite 
difference equations of a mathematical model for fluid flow in a certain type of 
reservoir-well system, then followed by numerical modeling and computer 
programming, and generates simulation software for application to the end. A schematic 
diagram of this process is shown in Figure 1. 
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Figure 1. Reservoir simulation process 
 
Reservoir simulation is briefly introduced here. The principles and procedures of the 
finite difference method are first discussed for the system of a single-phase slightly 
compressible fluid based on the theoretical basis of Taylor series. For the system of a 
single-phase compressible fluid, the finite difference equations are built on the 
individual gridblocks rather than discretization of the diffusivity equation, and are 
illustrated in Section 2. The heterogeneity of reservoirs, irregular size of gridblocks, and 
non-linearity of equations caused by pressure-dependent properties are considered in the 
finite difference equations.  
 
In the section dealing with the system of three-phase flow, the implicit pressure-explicit 
saturation method is described for obtaining the simulation equations. More detailed 
information of theory and practice of reservoir simulation was given by Peaceman 
(1978), Thomas (1977), Aziz and Settari (1979), Mattax and Dalton (1990) and Ertekin, 
Abou-Kassem and King (2001). 
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2. Finite Difference Model for Single-phase Slightly Compressible Fluid 
 
Development of reservoir simulators begins from setting up finite difference model for 
the equations that govern the fluid flow in porous media. These equations are partial 
differential equations which are constructed following the physical principles, such as 
continuity equation, Darcy’s law and equation of state. For example, Eq. (1) gives the 
diffusivity equation governing one dimensional single-phase flow of a slightly 
compressible fluid such as oil 
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where p  represents pressure, which is the function of location x  and time t . For other 
parameters in Eq. (1), φ  stands for porosity, k  for permeability, μ  for fluid viscosity 
and tc  for total compressibility of rock and fluid. Eq. (1) describes the flow of a slightly 
compressible fluid in a homogeneous and isotropic reservoir. The fluid has constant 
viscosity and compressibility. 
 
The finite-difference approach is the most commonly used numerical method in 
reservoir simulation and therefore will be introduced here. 
 
2.1. Discretization 
 
Unlike analytic methods which give continuous solution in time and space (if an 
analytic solution can be found), numerical approaches find solutions at discrete points in 
time and space. The spatial domain is divided into a number of grids (also called cells or 
blocks) and the time domain discretized to a number of time steps. Continuous partial 
differential equation is then transformed to an equivalent discrete form of the equation 
by finite-difference.  
 
Spatial discretization 
 
The grids in the numerical model are usually rectangular in form. Radial grids are 
sometimes used in single-well modeling or local hybrid gridding system. Discretization 
in spatial domain for one-dimensional, two-dimensional and three-dimensional reservoir 
problems is shown in Figure 2 (a)-(c) for illustrations. 
 
In these illustrations, the grid system is defined with xN gridblocks for a one-
dimensional model, with Nx by Ny gridblocks for a two-dimensional model, and 

 by  by x y zN N N for a three-dimensional model. The index is referred to the center and 
the unknowns such as pressure are calculated at the center of a gridblock. This type of 
gridding systems is called the block centered grid. The grid systems presented in Figure 
2 have a uniform gridblock for each of them. In practice, variable sizes of gridblocks are 
often used, which will be demonstrated in Section 3.  
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(a) One dimensional grid system

(b) Two dimensional grid system (c) Three dimensional grid system
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Figure 2. Discritization in spatial domain 
 
Time discretization 
 
Discretization in time domain is illustrated in Figure 3. 
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Figure 3. Discritization in time domain 
 
2.2. One-Dimensional Finite Difference 
 
When the partial derivatives are replaced by finite difference approximation based on 
Taylor’s series expansion, a partial differential equation is discretized into a finite-
difference form. With the finite-difference equation, a numerical solution can be 
obtained for the problems described by the governing equations with the specified 
conditions including initial and inner/outer boundary conditions.  
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For a one-dimensional problem, the value of pressure p at x x+ Δ can be approximated 
with Taylor series expansion if the values of p and its all derivatives at x are known. 
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Similarly, the value of p  at x x− Δ can be approximated as 
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where xΔ is the distance of the centers of two adjacent gridblocks and for a uniform 
gridding system xΔ  is a constant equal to the gridblock length.  
 
Combining Eqs. (2) and (3), the second order partial derivative in the left side of Eq. (1) 
may be approximated as below 
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For convenience, use i  to label an arbitrary gridblock between 1 and xN (the last 
gridblock) in Figure 2, i.e.,  1,  2,  , xi N= … . The location of the center of gridblock i  is 
represented by

ix . Similarly, the neighboring gridblocks 1i + is centered at 1ix + and 
1i − at

1ix − . To simplify the notation, ( )ip x is denoted as
ip , similarly, ( )1ip x + by 

1ip + and ( )1ip x − by
1ip −
. Then Eq. (4) may be written as 
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The first term on the right side in Eq. (5) is a central difference. Eqs. (2 & 3) are 
theoretically exact for an infinite number of terms in the series. When the series is 
truncated, the error will be introduced, which is called truncation error. The 
approximation of the second order partial derivative by the central difference has a 
truncation error of the order of ( )2O xΔ .  
 
For the first-order partial derivative with respect to time in the right side of Eq. (1), the 
forward difference is used. If the values of pi and its all derivatives are known at nt , the 
value of ip  at 1nt + can be approximated with Taylor series expansion as  
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where the superscripts n  and 1n + on 

ip  correspond to the beginning and end of the 
time interval, Δt.  
 
Rearranging Eq. (6) yields the forward difference as 
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This approximation of the first order partial derivative by the forward difference has a 
truncation error of the order of ( )O tΔ . 
 
Substituting Eqs. (5 and 7) into Eq. (1) and dropping the error terms, the finite 
difference approximation to the diffusivity equation is 
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Eq. (8) is a linear equation. It is the finite difference equation to the diffusivity equation 
(Eq.(1)), and the error is of the order of ( )2 ,  O x tΔ Δ .  
 
Initial condition 
The initial condition is specified to begin the timestep sequence. For the initial 
condition, n = 0, an initial pressure before production is usually assigned for all the 
gridblocks.  
 

0
initial , 1,i xp p i N= = …         (9) 

 
Boundary conditions 
 
The boundary condition specifies the equations at the first and last gridblocks. In 
general, there are two types of boundary conditions: fixed pressures and fixed first 
partial derivatives. 
 
For fixed pressures (Dirichlet condition), 
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For fixed first partial derivatives (Neumann condition), 
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The fixed values C1p  through C4p may change with time, but remain constant during a 
timestep.  
 
- 
- 
- 
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