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Summary 
 
Computational models based on agents and genetic learning have a tremendous 
potential for contributing to our understanding of how complex systems behave. 
Computational models, especially when embedded in a rigorous simulation experiment 
methodology, can give both theoretical and practical insight. In order for such models to 
continue to contribute, agents must be modeled as heterogeneous rather than 
homogeneous, and we must make advances in modeling the real complexity of schema, 
or mental models. Modelers should remember that the goal is not to mimic the system in 
detail, but rather capture its salient behavioral features. This is often difficult to 
accomplish because, unlike traditional statistical analysis, we lack formal methods for 
rejecting small, incremental changes in the models.   
 
1. Introduction 
 
Models are key to human understanding of the phenomena around them. Models help 
humans simplify the complexity of the world that they see, and facilitate prediction and 
thus experimentation and validation. Historically modeling has been a "top-down" 
activity: one would identify the key "state variables" that defined the system in question, 
and then one would formulate relationships (equations) that related these state variables 
to one another, and how they changed over time. For example, in an economics problem 
one might specify that GDP and unemployment rates are the key variables defining the 
economic system, and then formulate (analytically or empirically) a model that would 
relate the two variables to one another and how they change over time. 
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In a complex system, the ability to a priori identify state variables and their 
interrelationships is limited. It has been found that such systems are better modeled in a 
"bottoms-up" fashion: one starts by identifying the most basic building blocks of the 
system (agents), and then specifies how these agents interact with one another and the 
external environment. In this manner aggregate behavior is not prespecified, but rather 
emerges from within the system itself. Such a modeling approach is appropriate when 
the primary form of control in the system in question is self-organization--which is true 
in the case of many living systems. The computer has played an integral role in such 
modeling efforts, acting not only as an enabler but also a basic frame by which complex 
systems are specified. 
 
In this topic-level article we shall describe the basic computational elements of a 
complex system, give examples of complex systems models formulated at different 
levels of detail, and discuss some of the extensions, limitations, and philosophical issues 
involved in such modeling.   
 
2. General Computational Features of a Complex Adaptive System 
 
The study of complex adaptive systems arose from the confluence of several disciplines: 
artificial intelligence, evolutionary biology, nonlinear dynamics, and living systems 
theory, inter alia. There is no doubt that the computer played a key role in both helping 
researchers understand complex systems, as well as acting as a frame for specifying 
models of how complex systems worked. In this sense, the computer acted not only as a 
research instrument, but also as an active participant in the development of complex 
systems theory. 
 
John Holland's work ("ECHO") was the first to make explicit the minimal 
computational requirements for modeling complex systems. As stated in his book 
Hidden Order, part of the purpose of his formulation was to enable a computer language 
to be developed which would emulate the behavior of complex systems. As in any 
formulation of complex systems, Holland states the starting point of all complex 
systems are agents, and agents follow a stimulus response model such that rules 
predetermine that if stimulus "s" occurs then response "r" follows. These behavioral 
rules are subject to evolution and change via various genetic mechanisms. For instance, 
an agent in a financial market might behave according to the rule " if the stock price 
goes down more than 10 percent, sell." Of course that agent may learn that such a rule is 
over-reactive, and instead formulate a new rule that states, " if the stock price goes 
down two percent, sell; if the stock price goes down more than two percent, hold." In 
this sense the agent is adaptive. From a computational standpoint, rules can be 
embedded in lookup tables, expert systems-style if-then clauses, or numerical 
algorithms. Learning, or rule adaptation, is typically implemented via either genetic 
algorithms or schemes that change degree of belief parameters associated with rules. 
 
Agents interact with one another to form a complex system that subsequently has 
emergent properties. For example, in an economy, each firm acts as an agent, and 
multiple firms make up the complex system known as the economy. One emergent 
aggregate property of the economy is the gross domestic product.  In the complex 
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system known as the nervous system, individual neurons interact in such a manner that 
behavior emerges. 
 
Holland states that there are seven basic elements that constitute a complex system, and 
each of them in turn has computational implications. These seven basic elements are 
broken into two types, properties and mechanisms. Properties include aggregation, 
nonlinearity, flows, and diversity. Mechanisms include tagging, internal models, and 
building blocks. Let us consider the purpose of each of these elements and their 
computational implementation. 
 
Aggregation is the property by which a group of agents can be collectively modeled as a 
meta-agent.  Such a meta-agent has all the properties of a typical agent, and a collection 
of meta-agents forms a yet higher level complex system. For example, fish and other 
living matter in a lake can all be considered agents in the complex system labeled 
"lake". The lake itself can be considered an agent in the larger ecosystem. The lower 
level agents dictate the behavior of this meta-agent, known as "lake". Hence, complex 
systems are hierarchical. When modeling a complex system, these hierarchical levels 
can be taken into account explicitly by simply sequencing the activities in the 
simulation appropriately. For instance, in the case of the lake, one would first simulate 
the fish and plankton to determine the emergent properties of the lake, and then in turn 
simulate the lake and its surroundings to determine the emergent properties of the 
ecosystem. 
 
Tagging is the mechanism that facilitates such aggregation. In simulating a business 
organization as a complex system individual people could be considered agents. The 
aggregate behavior of individuals would determine the emergent properties of the 
organization. However, individuals within an organization obviously have different 
roles. It may be more advantageous to aggregate individuals by their functional 
affiliation, thereby determining the aggregate behavior of a given work area. In this 
case, agents would be given a "tag" that associated them with a particular functional 
department: marketing, purchasing, sales, management, and so on. Tags not only 
facilitate aggregation, but also allow agents to differentiate behavior towards one 
another. For example an individual from marketing may behave according to one set of 
rules when encountering another person from marketing, but may behave according to a 
very different set of rules when encountering a person from management. In the 
computer, tagging an employee would be a matter of assigning a class(es) of attributes 
to the agent. 
 
The third element is nonlinearity. In general a system is considered linear if its response 
is proportional to its stimulus; thus, nonlinearity implies a disproportionate response to 
the stimulus. When agent behavior is determined by a rule that is nonlinear, the 
subsequent interaction of agents will tend to be much more complex than a simple 
summing or averaging phenomena. For example, suppose we consider a collection of 
ants. One variable that might be tracked is how much food each ant has at any given 
time. The aggregate behavior, the total collection of food for the entire ant colony, is in 
fact an emergent property. In this case however the rule is linear: if an ant has two 
parcels of food, and adds three more, it now has five. Conversely, if one ant has five and 
another has six, the aggregate is 11.  Now consider a nonlinear phenomenon. The ant 
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lays down pheromones according to the following rule: if food is present and no 
pheromone exists, lay down much pheromone; if food is present and some pheromone 
exists, lay down much pheromone; if food is present and much pheromone exists, lay 
down little pheromone. Collectively, when aggregated together, the amount of 
pheromone present will not simply be related to how much food there is; it will be 
nonlinearly related to both how much food there is and how many ants have traversed 
the trail. Computationally, nonlinearity is implemented via rules that embed nonlinearity 
within them; such formulations may become as complex as a neural network. 
 
The fourth property of a complex system is flow. In general, there are two things that 
flow between the elements of a complex system; physical elements, such as resources, 
and information. Two properties of flow are important to complex systems. One is the 
multiplier effect. For example, if investors all decide to put their financial resources into 
a single organization, then that organization can induce positive gains from having 
excessive capital. Its ability to gain from such investments may be quite a bit larger than 
simply the aggregate linear benefit gained for each individual investor. Such multiplier 
effects are the result of nonlinearity and flow. The second property is recycling. For 
example, when considering the effects of farming on the local ecosystem, one must 
determine whether the method of farming is in fact leaching the soil of nutrients or 
returning nutrients to the soil. Computationally, flows represent the simultaneous 
change of attributes of agents within the complex system. For example, in the financial 
system, investors have an attribute called "cash", and organizations have an attribute 
called "capital".  When investors decide to back an organization, their cash is depleted 
while the organization's capital is replenished. 
 
The fifth property of a complex system is diversity. Diversity is related to the fact that 
agents are idiosyncratic; each agent is potentially unique not only in the resources that 
they hold, but also in terms of the behavioral rules that define how they see the world 
and how they react. In a complex system diversity is the key towards survival. Without 
diversity, a complex system converges to a single mode of behavior, which can be 
perilous. As Holland states, "the diversity observed in a complex system is the product 
progressive adaptations... each new adaptation opens the possibility for further 
interactions and niches". The diversity of agents in the complex system leads to co-
evolution. For example, parasites -- that is, individual organisms that live off the waste 
products of other organisms -- are in fact the most abundant form of life on earth. As an 
organism evolves so will its parasites; and as the parasite evolves, it supplies 
opportunities for the host to evolve to an improved state. Diversity is implemented 
within the computer via a diversity of rules that agents are both initiated to as well as 
allowed to evolve to, the diversity of tags and associated hierarchical aggregations that 
are included in the model, and the diversity of flows and agent attributes that constitute 
the system. 
 
The sixth property of a complex system is internal models. These internal models are in 
fact behavioral rules, or mental models, or schema that define behavior. Internal models 
interpret the external world (both the complex system itself and its external 
environment) and also define the actions to be taken based on those observations. When 
dealing with agents that represent living objects, one must take into account imperfect 
observation; in human systems, these shortcomings are known as bounded rationality. 
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One of the criticisms of many complex systems models is that they fail to get anywhere 
near modeling the complexity of the actual internal models in action, and that they 
ignore the idiosyncrasy of individual agents by modeling the agents' internal models as 
homogenous throughout the system. 
 
The final property of a complex system is building blocks. Building blocks are linked to 
internal models, in that most internal models are made up of existing building blocks. 
Building blocks are the reusable pieces, or modules, that economize the construction 
and reconstruction of internal models.  For example, when individuals attempt to 
recognize a face that they observe, their minds do not refer to aggregate models of 
"face"; rather, building blocks relating to sub-elements of recognition (eyes, nose, hair) 
are pieced together into an aggregate "face". While it is expensive to develop new 
building blocks, it is relatively inexpensive to piece together existing blocks into new 
forms, i.e. new internal models. For example, individuals learn the alphabet not as an 
end in itself, but rather to use the letters as building blocks to form words. Even words 
themselves alone are meaningless; words act as building blocks towards the 
construction of purposeful sentences that can be interpreted with meaning.  
Computationally, it is typical that one must define a priori the building blocks that 
constitute the complex system being modeled. That is because one must know the 
structure of the building block, in computational terms, in order to develop the 
algorithms and logic that will simulate behavior and learning. Thus, selection of 
building blocks is an absolutely critical step in the formulation of the complex systems 
model. 
 
One characteristic that is also an essential element of any complex system is a fitness 
function, which Holland discusses but for some reason does not consider elemental. 
Each agent has associated with it a fitness function that measures the amount of fitness, 
or health that the agent has at any given moment.  The fitness function is typically 
composed of some linear and/or nonlinear combination of agent attributes. For example, 
the fitness of individual on a financial landscape may be a function of how much cash 
they have on hand, their reserves, and their immediate potential for additional income. 
In general, the fitness function of an agent is composed of both local and global 
attributes, i.e. having to do with both the fitness of the individual as well as the fitness 
of either the aggregate system that the agent is a member of, or the larger complex 
system itself. Fitness functions may be unique, or they may be shared across aggregates 
of agents or across the entirety of the system. To the extent that fitness criteria are 
shared, agents tend to act in a collective fashion. A fitness function makes the agent 
teleological, or goal driven. This does not necessarily mean that each agent behaves in a 
selfish manner. In fact, the fitness function may be such that the individual may take 
action that is negative for themselves but positive for the collective, because the fitness 
function may be weighted towards global concerns. 
 
There are two ways in which fitness functions play a role in evolving internal models. 
First, adaptation can occur by assigning credit to particular rules that tend to increase 
fitness. Then the selection of a given rule will probabilistically depend on the amount of 
credit assigned to it. Or, rules may combine to form new rules via genetic mechanisms, 
mutate, live, and die according to the fitness of outcomes associated with them. Fitness 
functions are as key to behavior of the complex system as are building blocks: Change 
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the fitness function, and behavior of the system will also change. Therefore, from a 
modeling perspective, choice of an appropriate fitness function is essential. Yet in 
reality determination of fitness functions may be in fact more difficult than the selection 
of building blocks.   
 
For example, we have some understanding of how people piece together basic sensual 
stimuli in a cognitive fashion to determine appropriate interpretation and behavior; 
accordingly, what is the fitness function of a human being? Some have argued that the 
sole purpose of any living organism is to replicate its DNA. While this might be true, it 
perhaps does little for us in terms of practicality when trying to model how a consumer 
will react in a complex economic environment.  
 
There are many ways in which the both immediate and long-term health of the 
individual may be impacted by their decisions.  Even if one can identify the particular 
criteria that should be considered part of a fitness function, it is often difficult to specify 
the exact nature in which these criteria to be aggregated into a single fitness number. 
When criteria act somewhat independently, then a linear combination can be 
contemplated and one must determine the associated weights given to each attribute; 
when criteria act in interdependent way, than a multiplicative combination is in order. 
Real living systems probably do something much more complex than even this by using 
some sort of mechanism akin to a neural network. 
Taken as a whole, these criteria do appear to fully specify a complex system in terms of 
its "standard", well-accepted (scientific vernacular) definition. As Stacey notes, 
complex systems as modeled above, follow both a reductionist as well as cognitive 
tradition. They differ from other modeling approaches, however, in that there is no 
attempt to model aggregate behavior at the level of itself; rather, aggregate behavior is 
the result of emergence--surprise from within.   
 
In the next several sections we shall discuss computational models of complex systems. 
These models start off very simply, and become increasingly complex to the point 
where Holland's model is specified. Cellular automata have no fitness function per se; 
they have agents that share common internal models that do not evolve (typically), and 
have rigid rules of interaction (as operationalized by a spatial grid). Artificial life 
models relax rules of interaction, and may allow for unique rules for agents. As we 
move towards more specific models of human behavior we find explicit assumptions 
being made about agent fitness, interactions, attributes, and flow. We conclude with 
discussion of some philosophical issues pertaining to modeling and interpretation of 
such simulations. 
 
3. What is Emergence in a Computational System? 
 
As has been highlighted, one of the key features of any complex adaptive system is its 
emergent behavior. Behavior in a CAS is induced not by a single entity but rather by the 
simultaneous and parallel actions of agents within the system itself.  
 
Thus, we refer to the system as self-organizing which undergoes “a process . . . whereby 
new emergent structures, patterns, and properties arise without being externally imposed 
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on the system. Not controlled by a central, hierarchical command-and-control center, 
self-organization is usually distributed throughout the system”. 
 
In other words, the behavior of a CAS is emergent. Emergence is “the arising of new, 
unexpected structures, patterns, properties, or processes in a self-organizing system. 
These emergent phenomena can be understood as existing on a higher-level than the 
low-level components from which emergence took place. Emergent phenomena seem to 
have a life of their own with their own rules, laws and possibilities unlike the lower-
level components.” 
 
Consider, for example, the phenomenon of bird flocking. At first glance, one may be 
tempted to believe that the complex order observed in the flocking pattern is the result 
of either a predetermined plan, or the result of unilateral control employed by the lead 
bird. In fact, flocking patterns emerge as part of the system’s self-organizing behavior. 
Individual birds behave according to simple rules that are enacted based on local 
information. Any individual bird determines their speed and direction by flying towards 
the center of the flock, mimicking the velocity of birds around them and staying a safe 
distance away from neighboring birds. We also observe this same type of self-
organizing behavior in human systems, where simple behavior based on local 
information can, in the aggregate, lead to complex global behavior. 
 
Holland, in his book Emergence, attempts to develop an understanding of how 
emergence actually comes about. He states "recombination of elementary building 
blocks play a key role… (and that)…the component mechanisms act without central 
control, and the possibilities for emergence increase rapidly as the flexibility of the 
interaction increases… Emergence usually involves patterns of interaction that persist 
despite a continual turnover in the constituents of the patterns. A simple example is the 
standing wave in front of a rock in a white-water river. The water molecules making up 
the wave change instant by instant, but the wave persists so long as the rock is there and 
the water flows. Ant colonies, cities, and the human body (which turns over all of its 
constituent atoms in less than two years) offer more complex examples. These emergent 
macropatterns that depend on shifting micropatterns make emergence fascinating, and 
difficult to study." 
 
- 
- 
- 
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