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Summary 
 
The mathematical modeling of epidemics is a very active field of research which 
crosses different disciplines. Epidemiologists, computer scientists, and social scientists 
share a common interest in studying spreading phenomena and rely on very similar 
models for the description of the diffusion of viruses, knowledge, and innovation. 
Epidemic modeling has developed an impressive array of methods and approaches 
aimed at describing spreading phenomena, from an abstract point of view to a very 
detailed modeling of realistic outbreaks, thus widening its theoretical framework to deal 
with the intrinsic complexity inherent in real situations. In this chapter, we introduce the 
general framework of epidemic modeling in complex networks at different scales, and 
show how large heterogeneities affect the basic properties of disease spreading 
processes.  
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1. Introduction 
 
A vast array of methods and approaches of increasing complexity have been developed 
to tackle the understanding of epidemic spreading phenomena (Anderson and May, 
1992) (Figure 1). At the simplest level, the compartmental models divide a population 
into different classes or compartments, depending on the stage of the disease. More 
refined approaches consider the structure of the population in age or social groups, or 
the complex properties of the networks of contacts between individuals. In the case of 
spatially extended systems (Riley, 2007), schemes may explicitly include spatial 
structures and consist of multiple sub-populations coupled by traveling fluxes, while the 
epidemic within the sub-population is described according to approximations depending 
on the specific case studied (Hethcote, 1978; Anderson and May, 1984; May and 
Anderson, 1984, Bolker and Grenfell, 1993, 1995; Lloyd and May, 1996, Grenfell and 
Bolker, 1998; Keeling and Rohani, 2002; Ferguson et al, 2003, Rvachev and Longini, 
1985; Keeling et al, 2001; Hufnagel et al, 2004; Colizza et al, 2006a,b,2007a,b). At the 
most detailed level, agent based models (ABM) stretch even more the usual modeling 
perspective, by simulating the propagation of an infectious disease individual by 
individual (Chowell et al, 2003; Eubank et al, 2004; Longini et al, 2005, Ferguson et al, 
2005, Germann et al, 2006). Clearly, an interplay exists between the simplicity of the 
model and the accuracy of its predictions. 
 

 
 

Figure1. Different scales structure used in epidemic modeling. Circles represent 
individuals and each color corresponds to a specific stage of the disease. From left to 

right: homogeneous mixing, in which individuals are assumed to homogeneously 
interact with each other at random; social structure, where people are classified 

according to demographic information (age, gender, etc.); contact network models, in 
which the detailed network of social interactions between individuals provide the 

possible virus propagation paths; multi-scale models which consider sub-population 
coupled by movements of individuals, while homogeneous mixing is assumed on the 

lower scale; agent based models which recreate the movements and interactions of any 
single individual on a very detailed scale (a schematic representation of a city is shown). 
 
The possibility to use the above modeling approaches to understand and forecast 
epidemic spreading relies on the availability of actual and detailed data on the activity 
of individuals, their interactions and movement, as well as the spatial structure of the 
environment, transportation infrastructures, traffic networks, and travel times. While for 
a long time the access to such data was arduous and extremely limited, the development 
of new informatics tools and the increase in computer power have enabled in the recent 
years a tremendous progress in data gathering and analysis (Lazer et al, 2009; Pentland, 
2009; Onnela et al, 2007; Brockmann et al, 2006; Watts et al, 2007; Gonzalez et al, 
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2008). A huge amount of data has become finally available for scientific analysis and 
study. The scientific community has subsequently uncovered in such data the presence 
of complex properties and heterogeneities which cannot be neglected in the epidemic 
modeling description. In particular, the ever increasing level of interconnectedness and 
globalization of our modern society along with a high level of diversity and 
heterogeneity induces a novel epidemiological context: the mathematical and 
computational modeling of disease spread needs to integrate such complex features. 
 
In this context, the recent advances of the field of complex network studies have proven 
extremely valuable at various levels. The complex properties of individuals interactions 
and movements find indeed a convenient description in terms of networks (Albert and 
Barabasi, 200; Dorogotsev and Mendes, 2003; Pastor-Satorras and Vespignani, 2003; 
Caldarelli, 2007). At the level of a population, the contacts between individuals, through 
which a virus can propagate, are taking place along social networks. At larger scales, 
movements of individuals depend on the transportation networks such as e.g. the air 
transportation networks. They are measured through the travel patterns (at scales 
ranging from commuting patterns to world-wide travels) and expressed as fluxes of 
travelers between possible locations, which also find a natural description in terms of 
travel networks.  
 
In this chapter, we give an overview of how recent advances in network science, the 
increased computational power and innovative use of Information and Communication 
Technologies (ICT) have led to new understandings and new frameworks for epidemic 
modeling, leading to the development of sophisticated modeling approaches informed 
by realistic and detailed data sets aimed at predicting a variety of possible scenarios, 
evaluating treatment and control strategies, helping and supporting the decision process 
at the scientific, medical and public health level. 
 
2. Epidemic Spreading 
 
2.1. Generalities 
 
Basic epidemic models usually start by the definition of the various stages of a disease, 
and the probabilities for individuals to evolve from one stage to another, possibly by 
contact and contagion processes between individuals (Anderson and May, 1992). The 
patterns of contacts between individuals enter therefore as a crucial component in the 
evolution of the disease. Such patterns have to be characterized both at a local scale, for 
each individual (do all individuals typically meet the same number of other individuals, 
or are there strong differences between individuals?), and at the community level (for 
instance how do people move between locations in a city?). The complex properties of 
human behaviors might therefore have a strong effect on the epidemic spreading 
evolution and should be correctly taken into account and integrated into epidemic 
modeling. 
 
On a global scale, the emergence and spread of infectious diseases has long been known 
to depend on international travel and commerce (Massey, 1933; Morens, 1998). A 
striking example is given by the comparison between pre-industrial and recent epidemic 
spreading patterns. A famous case of pre-industrial outbreak for which it is possible to 
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obtain extensive historical data is provided by the spread of the so-called Black Death (a 
bubonic plague) in Europe during the 14th century. At that time, travel was limited in 
time and space, long range traveling was rare, and it is possible to consider that infected 
individuals diffused smoothly, generating an epidemic front that travels as a continuous 
wave through geographical regions. Historical studies confirm that the propagation 
indeed followed such a simple scheme. In particular, the Black Death spread through 
Europe from South to North (see Figure 2), with an invasion front moving at an 
approximate velocity of 200-400 miles/year (Murray, 1993). In modern societies, 
human traveling fluxes have increased tremendously, and long distances can be covered 
in short times. This unavoidably leads to new scenarios of epidemic spreading, of which 
recent examples are given by the SARS and the H1N1 epidemics (Peiris et al, 2003; 
Balcan et al, 2009a). In both cases, distant countries were affected very rapidly after the 
emergence of the new virus. Figure 2 (right panel) shows the spatio-temporal pattern of 
the global SARS spread, with a very rapid and patched structure of the main diffusion 
with distant outbreaks in Canada and in continental Europe. Understanding this type of 
spatio-temporal pattern, computing probabilities of diseases outbreak and time lags 
probabilities are all challenges that modern global epidemiology has to face.  
 
These considerations highlight that, starting from the very simple epidemic models, it is 
important to introduce complex patterns at various scales. Modern epidemiology faces 
new challenges in putting together these scales and fully integrating the multiscale 
complexity of human social contact patterns and flows in the description of the spread 
of a contagious disease. 
 

 
 

Figure 2. Epidemic spreading pattern changed dramatically after the development of 
modern transportation systems. In pre-industrial times disease spread was mainly a 

spatial diffusion phenomenon. During the spread of Black Death in 14thcentury Europe, 
only few traveling means were available and typical trips were limited to relatively 

short distances on the time scale of one day. Historical studies confirm that the disease 
diffused smoothly generating an epidemic front traveling as a continuous wave through 
the continent at an approximate velocity of 200-400 miles/year. The SARS outbreak on 

the other hand was characterized by a patched and heterogeneous spatio-temporal 
pattern mainly due to the air transportation network identified as the major channel of 

epidemic diffusion and able to connect far apart regions in a short time period. The 
SARS maps are obtained with a data-driven stochastic computational model aimed at 
the study of the SARS epidemic pattern and analysis of the accuracy of the model’s 

predictions. Simulation results describe a spatio-temporal evolution of the disease (color 
coded countries) in agreement with the historical data. Analysis on the robustness of the 
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model’s forecasts leads to the emergence and identification of epidemic pathways as the 
most probable routes of propagation of the disease. Only few preferential channels are 
selected (arrows; width indicates the probability of propagation along that path) out of 
the huge number of possible paths the infection could take by following the complex 

nature of airline connections (light grey, source: IATA). 
 
2.2. Basic Epidemic Modeling: Compartmental Models, the Homogeneous Mixing 
Assumption and the Epidemic Threshold 
 
In general, epidemic models deal with the evolution of the number and location of 
infected individuals in the population as a function of time. Their goal is to understand 
the properties of epidemics both at short times, such as how an outbreak will evolve, 
and at long times: e.g. will there be a non-zero density of infected individuals, an 
endemic phase, or a global outbreak? How can non-seasonal cycles emerge and be 
sustained? In this context, a very important basic parameter is the basic reproductive 
number, usually denoted by 0R . This quantity counts the number of secondary infected 
cases generated by one primary infected individual in a fully susceptible population. 
One can intuitively understand that epidemics will spread if, for each infected, the 
number of new infectious individuals generated by a case while he/she is infected is 
larger than one, i.e. 0 1R > . In the opposite case, the epidemic outbreak will decay 
rapidly. This leads to the definition of a crucial concept: the epidemic threshold, which 
separates epidemics that will affect a finite fraction of the population from outbreaks 
which die out in a finite time and do not affect strongly the population. The epidemic 
threshold is a central concept which provides a reference frame and defines a target for 
containment and mitigation measures, aimed at an effective reduction of the 
reproductive number below 1 in order to stop the epidemic outbreak. In the following 
paragraphs, we will define the main basic models of epidemic modeling, show how to 
derive the epidemic threshold condition in some simple cases, and describe how taking 
into account complex properties of the interaction networks drastically alters the results. 
 
2.2.1. Definition of the Compartmental Models 
 
In the most basic approach to epidemic modeling, the population is divided into 
different classes, usually called compartments, depending on the stage of the disease. 
For instance, healthy individuals are classified into the compartment of susceptible 
(denoted by S), while individuals who have contracted the infection and are contagious 
sit in the infectious (I) compartment (Anderson and May, 1992; Murray, 1993). Another 
often considered compartment encompasses the recovered individuals (R, who have 
recovered from the disease and are no more susceptible), and additional compartments 
may also be used to model, for instance, people immune to the disease, vaccinated 
individuals, asymptomatic infectious, or individuals exposed to the infection but not yet 
infectious (exposed, E). In this simple framework, the stages of the disease are therefore 
discretized into the different compartments. Moreover, individuals differ only through 
their infection stage, and are assumed to be identical and homogeneously mixed within 
each compartment.  
 
The division into compartments is complemented by the definition of the rules which 
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govern the transitions of individuals from one compartment to another, and which 
depend on the disease etiology. In general, two classes of processes can be 
distinguished. The simplest class corresponds to spontaneous transitions of one 
individual from one compartment to another. Examples include the spontaneous 
recovery of infected individual (  I R→ ), or the evolution from a latent to an 
infectious state after the incubation period (  E I→ ). The second class corresponds to 
contagion processes, i.e. binary interactions, such as the contagion of a susceptible 
individual by an infectious one (represented by:  2S I I+ → ).  
 
Using this general framework, one can derive the dynamical equations which describe 
the evolution of the number of individuals in each compartment. We will here consider 
the three basic models commonly used to illustrate and explore the properties of 
epidemic spreading phenomena (Anderson and May, 1992; Murray, 1993). The simplest 
one, the susceptible-infected (SI) model considers that individuals are either susceptible 
or infectious, and individuals who become infected by contact with an infectious remain 
forever in this compartment. In the susceptible-infected-susceptible (SIS) model in 
contrast, infectious individuals become spontaneously susceptible again, while in the 
susceptible-infected-recovered (SIR) model, infectious individuals recover 
spontaneously, but enter the recovered compartment and cannot be infected again. 
 
Let us first consider the SI model. In this case, the number of infectious individuals can 
only increase, and the population is ultimately entirely affected. The evolution of the 
model as a function of time t is entirely described by the number of infected individuals 
( )I t  or equivalently the corresponding density ( ) ( ) /i t I t N=  in a population of N  

individuals. The number ( )S t  of susceptible is simply given by the conservation of the 

total number ( ) ( )N S t I t= + . 
 
Denoting by β  the pathogen transmission rate per contact, the probability that a 
susceptible individual acquires the infection from an infectious contact in a small time 
interval dt  is by definition dtβ . The force of infection (the per capita rate of 
acquisition of the disease) for a susceptible will therefore be given by the transmission 
rate per contact β  and his/her number of contacts with infectious individuals. 
 
If we assume homogeneous mixing in the population, the number of contacts with 
infectious individuals will be simply given by the number of contacts k  times the 
probability to find an infectious individual in the population, given by the density ( )i t . 
This corresponds to assuming that each individual has the same number of contacts 

~k k< > , and that the contact with a specific class is determined only by the incidence 
of that class in the population, i.e. individuals mix homogeneously. Therefore, the 
evolution of the SI model is described by the following deterministic reaction rate: 
 

[ ]( ) 1 ( ) .di k i t i t
dt

β= −  
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This equation states that the growth of the density of infected individuals is proportional 
to the spreading rate kβ < > , the density 1 ( )i t−  of susceptible that may become 
infected, and the number of infected individuals in contact with any susceptible 
individual.  
 
In the SIS and SIR models, the disease transmission is described as in the SI model, 
while the probability of spontaneous recovery of each infected individual is dtμ , 
where μ  is the recovery rate. For the SIS case, the individuals become susceptible 
again and may thus be re-infected, going through the cycle susceptible → infected → 
susceptible. Since individuals can be only in one of two states, the state of the 
population is once again fully described by the density of infected, whose evolution is 
described by the equation 
 

[ ]( ) ( ) 1 ( ) .di i t k i t i t
dt

μ β= − + −  

 
In the SIR case, the infected individuals who recover enter a new compartment R , 
whose density is denoted by ( ) ( ) /r t R t N= . The evolution of the epidemics is then 

described by two variables, for instance ( )i t  and ( )r t , and the number of susceptible 

is given by the conservation equation ( ) ( ) ( )S t I t R t N+ + = . The processes of 
contamination and recovery are described as in the SIS model, so that the evolution 
equations read 
 

[ ]( ) ( ) 1 ( ) ( ) .di i t k i t r t i t
dt

μ β= − + − −  

( )dr i t
dt

μ= . 

 
Clearly, the dynamical rules of the SIR model imply that any infected individual 
becomes recovered at some point, so that at large time the epidemic necessarily 
disappears.  
 
The dynamical evolution of both SIS and SIR models show that two time scales appear 
and compete in the spreading process: the spontaneous recovery of individuals occur on 
a time scale 1 / μ , while the spreading time scale is given by 1 / kβ < > . Let us first 
consider the limiting case in which 1 / μ  is much smaller than 1 / kβ < > . It is then 
intuitively clear that the process will be dominated by the recovery of infected 
individuals towards the susceptible or the recovered compartments. In this case, the 
epidemic outbreak will not spread. In contrast, it the spreading time is much smaller 
than the recovery time (1 / μ  much larger than 1 / kβ < > ), the recovery process can 
be neglected in a first approximation for the study of the early dynamics of the epidemic 
outbreak. This corresponds to the SI model, and therefore in this limit the infection will 
affect a large proportion of the population. These two limiting cases define two different 
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regions in the parameters space which result in very different behaviors of the spreading 
process, and a transition from one regime to the other must occur at a certain value of 
the parameters, as we will see in the next paragraph. 
 
- 
- 
- 
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