
COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

ADAPTIVE DYNAMIC PROGRAMMING AND
REINFORCEMENT LEARNING

Derong Liu and Ding Wang
The State Key Laboratory of Management and Control for Complex Systems, Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, PR China

Keywords: Adaptive dynamic programming, approximate dynamic programming,
neural dynamic programming, neural networks, nonlinear systems, optimal control,
reinforcement learning

Contents

1. Introduction
2. Reinforcement Learning
3. Adaptive Dynamic Programming
4. Iterative ADP algorithm
5. Applications and a Simulation Example
6. Conclusions
Glossary
Bibliography
Biographical Sketches

Summary

In the present chapter, the mathematical formulations and architectural structures of
reinforcement learning (RL) and a corresponding implementation approach known as
adaptive dynamic programming (ADP) are introduced. The iterative ADP algorithm is
developed to design the controller of nonlinear systems that both learn and exhibit
optimal behavior. It is shown that the cost function and control law sequences of the
iterative ADP algorithm can both converge to the optimal ones. Then, the globalized
dual heuristic programming technique is employed to facilitate the iterative algorithm,
where three neural networks are constructed to approximate the system dynamics, the
cost function, and the control law, respectively. Moreover, the practical applications of
ADP- and RL-related techniques are described. A simulation example is also provided
to verify the effectiveness of the proposed approach. Finally, some topics about future
development of ADP and RL are pointed out.

1. Introduction

Every living organism in the nature interacts with its environment and uses the
interactions to improve its own actions to survive and increase. However, the limits
within which the organisms can survive are often quite narrow and the resources
available to most species are meager. Therefore, most organisms act in an optimal
fashion in order to conserve resources yet achieve their goals. Optimal actions may be
based on minimum fuel, minimum energy, minimum risk, maximum reward, and so on.

Learning is a process of acquiring new or modifying existing knowledge, behaviors,

 128

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

skills, values, or preferences and may involve synthesizing different types of
information. As Poggio and Girosi (1990) stated, the problem of learning between input
and output spaces is in fact equivalent to that of synthesizing an associative memory
that retrieves appropriate output when the input is present and generalizes when a new
input is applied. With strong capabilities of self-learning and adaptivity, artificial neural
networks (ANN or NN) are an effective tool to implement learning purpose (Haykin,
1999; Jagannathan, 2006). The ability to learn can be possessed by humans, animals,
and some machines.

As a basic branch of artificial intelligence (Sigaud and Buffet, 2010), machine learning
is a scientific discipline concerned with the design and development of various
algorithms. Hence, the algorithms can allow the machine to learn via inductive
inference based on observing data that represents incomplete information about
statistical phenomenon and generalize it to rule and make predictions on missing
attributes or future data. There are many types of learning including supervised learning,
unsupervised learning, etc. We call modification of actions based on interactions with
the environment reinforcement learning (RL). The combiner of learner and decision-
maker is called the agent. The environment comprises everything outside the agent and
also interacts with the agent. RL refers to an actor that interacts with its environment
and modifies its actions based on stimuli received in response to its actions. RL implies
a cause and effect relationship between actions and reward or punishment. RL concerns
with how an agent ought to take actions in an environment so as to maximize some
notion of cumulative reward (Lewis and Vrabie, 2009; Sutton and Barto, 1998; Wang et
al., 2009).

The RL is highly related to dynamic programming (DP) technique, which is a very
useful tool in solving optimization problem by employing the principle of optimality.
Additionally, in control systems community, it is also an important approach to handle
optimal control problem. Classical DP algorithms are of limited utility in RL both
because of their assumption of a perfect model and because of their great computational
expense, but they are still important theoretically. DP provides an essential foundation
for understanding RL. Actually, most of the methods of RL can be viewed as attempts to
achieve much the same effect as DP, with less computation and without assuming a
perfect model of the environment.

It is often of interest to mimic nature and design control systems that are optimal in
some sense of effectively achieving required performance without using undue amounts
of resources.

As is known, the optimal control of nonlinear systems is a difficult and challenging area.
Unlike the optimal control of linear systems, the optimal control of nonlinear systems
often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation instead of
the Riccati equation (Lewis and Syrmos, 1995). For example, the discrete-time HJB
(DTHJB) equation is more difficult to work with than the Riccati equation because it
involves solving nonlinear partial difference equations. Fortunately, DP provides an
effective avenue to deal with the problems. However, due to the well-known “curse of
dimensionality” (Bellman, 1957), it is often computationally untenable to run DP to

 129

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

obtain the optimal solutions. Moreover, the backward direction of the search obviously
precludes the use of DP in real-time control.

One class of RL methods is built based on the actor-critic structure, namely, adaptive
critic designs (Prokhorov and Wunsch, 1997), where an actor component applies an
action or control policy to the environment, and a critic component assesses the value of
that action. The combination of DP, NN and actor-critic structure results in the adaptive
dynamic programming (ADP) algorithm, which was proposed by Werbos (1992) as a
method to solve optimal control problems forward-in-time. During the last two decades,
the ADP-related research has gained much progress in terms of theory and applications,
especially in fields of artificial intelligence and control theory (Al-Tamimi et al., 2008;
Balakrishnan et al., 2008; Bertsekas, 2011; Jagannathan and He, 2008; Lewis and
Vrabie, 2009; Liu, 2005; Si and Wang, 2001; Vamvoudakis and Lewis, 2010;
Venayagamoorthy, 2009; Wang et al., 2012; Werbos, 2011; Yang et al., 2008; Zhang et
al., 2009). Now, the ADP approach has become the key direction for future research in
understanding brain intelligence and building intelligent systems (Werbos, 2009).
Moreover, it has becomes a main component of computational intelligence (Ruano,
2008).

2 Reinforcement Learning

In simple terms, the RL problem is meant to learn from interaction to achieve a goal.
The interacting process between agent and environment consists of the agent selecting
actions and the environment responding to those actions and presenting new situation to
the agent. Besides, the environment gives rise to rewards, which are special numerical
values that the agent tries to maximize (or minimize) over time.

Figure 1. The interaction between agent and environment

More specifically, the agent and environment interact at each of a sequence of discrete
time steps 0,1,2,k = … . At each time step k , the agent receives some representation of
environment’s state n

kx ∈\ , where n\ is the set of possible states, and then selects an
action m

ku ∈\ , where m\ is the set of actions available in state kx . One time step later,
the agent receives a numerical reward 1kU + and finds itself in a new state 1kx + . The
schematic diagram of agent-environment interaction is depicted in Figure 1.

At each time step, the agent implements a mapping from states to probabilities of

 130

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

selecting each possible action. This mapping is called the agent’s policy and is denoted
by kp , where (,)kp x u is the probability that ku u= if kx x= . RL methods specify how the
agent changes its policy as a result of its experience. The agent’s goal is to maximize (or
minimize) the total amount of reward it receives over the long run.

3 Adaptive Dynamic Programming

The above RL problem can be taken as the basis of ADP-related problem. We consider
nonlinear discrete-time dynamic (deterministic) systems given by

1 (, ()), 0,1, 2,k k kx F x u x k+ = = … , (1)

where ()ku x can be denoted by ku for simplicity and n

kx ∈\ and m
ku ∈\ represent the

state vector and control action of the controlled system respectively. The cost function
associated with the controlled system is

() (,)i k
k i i

i k
J x U x uγ

∞
−

=

=∑ , (2)

whereU is called the utility function and γ is the discount factor with 0 1γ< ≤ . The
function J is dependent on the initial time step k and the initial state kx , and it is referred
to as the cost-to-go of state kx . The objective of optimal control problem is to choose a
control sequence 1, ,k ku u + … , so that the cost function J in (2) is minimized. According
to Bellman’s optimality principle, the optimal cost function from time step k

*

, ,1
() min (,)i k

k i iu uk k i k
J x U x uγ

∞
−

+ =

= ∑… (3)

can be rewritten as

* 1

, ,1 2 1
() min (,) min (,)i k

k k k i iu u uk k k i k
J x U x u U x uγ γ

∞
− −

+ + = +

⎧ ⎫⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑…
. (4)

In other words, *()kJ x satisfies the DTHJB equation

{ }* *
1() min (,) ()k k k kuk

J x U x u J xγ += + . (5)

The corresponding optimal control *()ku x is the ku which achieves this minimum, i.e.,

{ }* *
1() arg min (,) ()k k k kuk

u x U x u J xγ += + . (6)

 131

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

Equation (5) is the principle of optimality for discrete-time systems. Its importance lies
in the fact that it allows one to optimize over only one control vector at a time by
working backward in time.
In nonlinear continuous-time case, the controlled systems can be given by

0() ((), (())),x t F x t u x t t t= ≥� . (7)

In this case, the cost is defined by

(()) ((), (()))d
t

J x t U x u xτ τ τ
∞

= ∫ . (8)

For continuous-time systems, the optimal cost *
0()J x will satisfy the HJB equation

T* *

T*
* *

(()) (())min ((), ()) ((), ())
()

(())((), ()) ((), ()).
()

u U

J x t J x tU x t u t F x t u t
t x t

J x tU x t u t F x t u t
x t

∈

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪− = +⎨ ⎜ ⎟ ⎬∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

 (9)

Equations (5) and (9) are called the optimality equations of DP which are the basis for
implementation of DP. However, as stated in Section 4.1, the theoretical solution of HJB
equation is very different to obtain. Thus, the idea of ADP has been engendered to
circumvent the “curse of dimensionality” by building a critic system to approximate the
cost function of DP. Solution to the ADP formulation is obtained through NN based
actor-critic approach. Except for the aforementioned “adaptive critic designs” and RL,
there are several other synonyms used for ADP, including “approximate dynamic
programming”, “neuro-dynamic programming”, and “neural dynamic programming”.
The main idea of ADP is shown in Figure 2.

Figure 2. The main idea of ADP

 132

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

3.1 Basic structures

According to Werbos (1992) and Prokhorov and Wunsch (1997), ADP approaches were
classified into several main schemes: heuristic dynamic programming (HDP), action-
dependent HDP (ADHDP), also known as Q-learning, dual heuristic dynamic
programming (DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Werbos
(1992) originally proposed two basic versions of ADP, i.e., HDP and DHP. The basic
components are three NNs, which are model network, critic network and action
network. The structure diagram of HDP is shown in Figure 3.

Figure 3. The HDP structure

In HDP, the output of the critic network is Ĵ , which is the estimate of J in (2). The
training process is done by minimizing the following error measure over time

{ }2
H H 1

1 ˆ ˆ() (,) ()
2k k k k k

k k
E E J x U x u J xγ += = − −∑ ∑ . (10)

When H 0E = for all k , (10) implies that

1
ˆ ˆ() (,) ()k k k kJ x U x u J xγ += + . (11)

Then, we can further obtain that

ˆ() (,)i k
k i i

i k
J x U x uγ

∞
−

=

=∑ , (12)

which is the same as (2).

 133

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

In DHP, the action network remains the same as the one for HDP, while the critic
network outputs the derivative of the cost function, namely, the costate function. The
structure diagram is depicted in Figure 4.

Figure 4. The DHP structure

Here, the critic network is trained to minimize

2
1

D D

ˆ ˆ() (,) ()1
2

k k k k
k

k k k k k

J x U x u J xE E
x x x

γ +⎧ ⎫∂ ∂ ∂⎪ ⎪= = − −⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭
∑ ∑ (13)

over time. Note that when D 0E = for all k , we have

1
ˆ ˆ() (,) ()k k k k

k k k

J x U x u J x
x x x

γ +∂ ∂ ∂
= +

∂ ∂ ∂
. (14)

Though the training process of the critic network in DHP is somewhat complicated, the
resulting behavior is expected to be superior to HDP. This is because the action network
is adapted based on the value of Ĵ x∂ ∂ , which is a direct output of DHP. However, if we
employ HDP, we have to compute Ĵ x∂ ∂ from backpropagation, which will introduce
approximation error inevitably.

3.2. Improved Structures

Prokhorov and Wunsch (1997) presented some new improvements to the design of
GDHP. The most remarkable feature of GDHP is that the critic network outputs both the
cost function Ĵ and its derivative Ĵ x∂ ∂ . This can be schematically depicted in Figure 5.

Padhi et al. (2006) proposed the single network adaptive critic structure, which
eliminated the use of the action network and offered three potential advantages: a

 134

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

simpler architecture, lesser computational load and elimination of the approximation
error associated with the action network. This structure is shown in Figure 6 and the
training details can be referred to Padhi et al. (2006).

Figure 5. The critic network of GDHP

Figure 6. The single network adaptive critic structure

In Si and Wang (2001), the direct HDP technique was developed for the design of
model-free adaptive critic, as shown in Figure 7. Compared with the traditional HDP
technique, the model network is eliminated, which simplifies the structure and reduces
the computation burden as well.

Figure 7. The direct HDP structure

The binary reinforcement signal ()kr x is provided from the external environment and

 135

COMPUTATIONAL INTELLIGENCE – Vol. I - Adaptive Dynamic Programming And Reinforcement Learning - Derong Liu, Ding
Wang

©Encyclopedia of Life Support Systems (EOLSS)

may be as simple as either a “0” or “ 1− ” corresponding to “success” or “failure”,
respectively. The prediction error for training the critic network
is 1

ˆ ˆ() () (,)k k k kJ x J x U x uγ −− + . The principle in adapting the action network is to
indirectly backpropagate the error between the desired ultimate objective, denoted
by c ()kU x , and the approximate cost function ˆ()kJ x . The value of c ()kU x can be set to
“0”, which has be defined as the reinforcement signal for “success”.

Liu et al. (2001) further studied the model-free adaptive critic designs and provided two
approaches for training the critic network. Figure 8 shows the diagram of forward-in-
time approach.

Figure 8. The forward-in-time approach

In this approach, we view ˆ()kJ x as the output of the critic network to be trained and
choose 1

ˆ(,) ()k k kU x u J xγ ++ as the training target. Obviously, ˆ()kJ x and 1
ˆ()kJ x + are

obtained using state variables at different time instances.

Another method for training the critic network is backward-in-time approach described
in Figure 9.

Figure 9. The backward-in-time approach

 136

COMPUTATIONAL INTELLIGENCE – Vol. I - Associative Learning - Hava T. Siegelmann, Robert Kozma

©Encyclopedia of Life Support Systems (EOLSS)

Nomenclature

LAN : Localist Attractor Networks
RAN : Reconsolidation Attractor Network
ReC : Memory Reconsolidation
ReKAM : Reconsolidation Kernel Associative Memory
SOM : Self Organizing Maps
STDP : Spike Timing Dependent Plasticity

Bibliography

[1] Siegelmann, HT (April 2013). “Turing on Super-Turing and Adaptivity”. Journal Progress in
Biophysics & Molecular Biology. pii: S0079-6107(13)00027-8. [A review paper that describes the Super-
Turing model of computation and its possible effect in Artificial Intelligence and Biology].

[2] Siegelmann, HT (April 1995) “Computation Beyond the Turing Limit,” Science 238(28): 632-637. [A
research paper introducing a particular dynamical system that has chaotic properties, and that
computationally cannot be described by the Turing machine model and instead can be fully explained by
the Super-Turing model].

[3] Hebb, D (1949). The Organization of Behavior. New York: Wiley & Sons [Hebb’s seminal work
describing his postulate of associative learning at the neural level].

[4] Markram H, Lübke J, Frotscher M, Sakmann B (January 1997). "Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs". Science 275 (5297): 213–5. [A research paper that building
on results of previous researchers, suggests how synapses change plastically by the Spike Timing
Dependence associative learning process].

[5] Hopfield JJ (April 1982). "Neural networks and physical systems with emergent collective
computational abilities". Proceedings of the National Academy of Sciences of the USA, 79(8): 2554–2558.
[Hopfield introduces a physics based symmetric network, that can keep memory traces in its attractors;
An energy function is defined in which its minima are the attractors.].

[6] Kosko, B (Jan/Feb 1988). “Bidirectional Associative Memories”. IEEE transactions of systems, man
and cybernetics: 49-60. [A generalization of the Hopfield attractor networks to allow for input-output
functions].

[7] Cohen MA and Grossberg S (1983). “Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks”. IEEE Transactions on Systems, Man, and Cybernetics,
13: 815-826. [Grossberg’s group early research - somewhat unique and separate from the main stream -
includes other attractor networks of the time].

[8] Zemel R and Mozer, M (2001). "Localist attractor networks". Neural Computation 13: 1045–1064. [A
paper that introduced a particular attractor network with three levels: Input, neural, and attractors: The
dynamic flow is in the middle layer, while each neuron in the third level stands for a memory trace. This
allows for great separation among attractors, a known problem in all Hopfield-like networks].

[9] Kaneko K (1990), “Clustering, coding, switching, hierarchical ordering, and control in network of
chaotic elements”. Physica D 41: 137-172. [Introduces chaos theory in neural networks].

[10] Aihara K (1994). “Chaos in neural response and dynamical neural network models: toward a new
generation of analog computing”. in Towards the harnessing of chaos, edited by M. Yamaguti, Elsevier,
Science Publishers B.V., Amsterdam: 83–98. [Introduces analog computation and chaotic behavior in
networks].

[11] Kozma R and Freeman WJ (2001). “Chaotic resonance: Methods and applications for robust
classification of noisy and variable patterns”. International Journal of Bifurcation and Chaos 10: 2307-
2322. [Practical usages of chaotic dynamic in neural networks].

 160

Guest6
Text Box

Guest6
Text Box
TO ACCESS ALL THE 35 PAGES OF THIS CHAPTER, Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-44-40-04

COMPUTATIONAL INTELLIGENCE – Vol. I - Associative Learning - Hava T. Siegelmann, Robert Kozma

©Encyclopedia of Life Support Systems (EOLSS)

[12] Kaneko K and Tsuda I eds (2003). Focus issue on chaotic itinerancy. Chaos 13: 926-1164. [Special
dynamical behavior in networks and memory].

[13] Nowicki D and Siegelmann HT (june 2010). “Flexible Kernel Memory”. PLOS One 5: e10955.
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0010955 [Memory model that
includes unbounded number of memory traces and allows inputs of variation in shades – much more
practical than previous model].

[14] Ben-Hur A, Horn D, Siegelmann HT and Vapnik V (2001). “Support vector clustering”. Journal of
Machine Learning Research 2: 125-137. [A very successful clustering method based on kernel functions].

[15] Sara SJ (2000). “Retreival and reconsolidation: Toward a neurobiology of remembering”. Learning
and Memory, 7(2): 73-84. [Coins the term “reconsolidation” as the process of re-inserting information
after recall].

[16] Blumenfeld B, Preminger S, Sagi D and Tsodyks M (2006). ”Dynamics of memory representations
in networks with novelty-facilitated synaptic plasticity”. Neuron 52(2): 383-394. [A version of Hopfield
network that allows the update of synaptic strength over time – rather than only during original loading].

[17] Siegelmann HT (2008). “Analog-Symbolic Memory that Tracks via Reconsolidation”. Physica D:
Nonlinear Phenomena 237 (9): 1207-1214. [A generalization of the localist attractor network to
acknowledge the process of reconsolidation].

[18] Osan R, Tort A and Amaral O (2011). “A Mismatch-Based Model for Memory Reconsolidation and
Extinction in Attractor Networks”. PLoS ONE, 6(8):e23113. [A small update to the Hopfield model that
allows it to remove memories].

[19] Nowicki D, Verga P, Siegelmann HT (2013). “Modeling Reconsolidation in Kernel Associative
Memory”. PLoS ONE 8(8): e68189. doi:10.1371/journal.pone.0068189 [Richest model of
Reconsolidation in computational terms].

[20] Kohonen T and Honkela T (2007). "Kohonen Network". Scholarpedia. [Recent paper summarizing
self-organizing neural network by Teuvo Kohonen and follows updates and applications].

[21] Tal A and Siegelmann HT (June 2013). “Conscience mechanism in neocortical competitive
learning,” ICCN2013, Sweden. [Recent work that utilizes a biological version of the SOM to explain
recently found biological connection in layer 5].

[22] Roth F, Siegelmann HT and Douglas RJ (2007). “The Self-Construction and -Repair of a Foraging
Organism by Explicitly Specified Development from a Single Cell,” Artificial Life 13(4: 347-368.
[Artificial life model that uses the concept of self organization – joining chemistry and physics]

Biographical Sketches

Dr. Siegelmann’s research focuses on mathematical and computational studies of the brain, memory,
biological computation, and systemic disorders. Her research into biologically inspired cognitive and
neural processes has led to theoretical modeling and original algorithms of machine systems capable of
superior computation and learning. A unifying theme underlying her research is the study of dynamical
and complex systems. Siegelmann's seminal Turing machine equivalence of recurrent neural networks
theorem and Super-Turing theory introduced a new subfield of computer science. Her modeling of
geometric neural clusters resulted in the highly utile and widely used Support Vector Clustering algorithm
with Vladimir Vapnik and colleagues, specializing in the analysis of high-dimensional, complex data. Her
work is often interdisciplinary, combining complexity science, dynamical and computational theories
with biological sciences, neurology, physics and medicine. Recent contributions include computational
and dynamical system studies of reconsolidation, the circadian system, addiction, cancer, and genetic
networks; applications in intelligent robotics and advanced human-robot interfaces for military and health
applications are currently funded. Her engineering background has been central to her NSF funded
development of analog hardware for brain-like intelligence. She remains active in supporting young
researchers and encouraging minorities and women to enter and advance in STEM. She has years of
experience consulting with industry, creating educational programs including interdisciplinary and
international programs, fund raising, and in educational administration and organization.

 161

COMPUTATIONAL INTELLIGENCE – Vol. I - Associative Learning - Hava T. Siegelmann, Robert Kozma

©Encyclopedia of Life Support Systems (EOLSS)

Dr. Kozma's current research interests include spatio-temporal dynamics of neural processes, random
graph approaches to large-scale networks, such as neural networks, computational intelligence methods
for knowledge acquisition and autonomous decision making in biological and artificial systems; he also
published in related fields including signal processing; and design, analysis, and control of intelligent
systems. He has served since 2009 as a Professor of Computer Science, University of Memphis, Memphis,
Tennessee, and Professor of Mathematical Sciences, University of Memphis, Memphis, Tennessee. He
has also been the director of Computational Neurodynamics Laboratory, presently CLION, FedEx
Institute of Technology of the University of Memphis, Memphis since 2001. Kozma serves on the
AdCom of IEEE Computational Intelligence Society CIS (2009–2012) and on the Governing Board of the
International Neural Network Society INNS (2004–2012). He is Chair of the Distinguished Lecturer
Program, IEEE CIS. He has been a Technical Committee Member of IEEE Computational Intelligence
Society since 1996, and IEEE Senior Member. He also served in leading positions at over 20 international
conferences, including General Chair of IEEE/INNS International Joint Conference on Neural Networks
IJCNN09 at in Atlanta; Program Co-Chair of International Joint Conference on Neural Networks
IJCNN08/WCCI08 in Hong Kong; Program Co-Chair of IJCNN04, Budapest, Hungary; Chair for
Finances of IEEE WCCI06, Vancouver, Canada. He is Associate Editor of ‘Neural Networks (Elsevier),’
‘IEEE Transactions on Neural Networks,’ ‘Neurocomputing’ (Elsevier), ‘Journal of Cognitive
Neurodynamics’ (Springer), Area Editor of ‘New Mathematics and Natural Computation’ (World
Scientific), and ‘Cognitive Systems Research.’

 162

