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Summary 
 
Biotechnological processes show a complex behavior. The understanding and prediction 
of their temporal evolution, determination of the parameters that define it, and their 
control are problems that the biotechnologist often confronts.  A recurrent concept 
during the next sections will be that of dynamical behavior.  By this, we are referring to 
a type of temporal behavior, which determines the type of models and mathematical 
tools to use. Comprehension of this point along with its implications for modeling and 
control will be the principal goal addressed. Throughout this chapter, we try to define 
basic concepts as well as properties needed to carry out the analysis of a 
biotechnological process and eventually design an effective control of the cellular 
population behavior during controlled conditions of growth. 
 
1. Introduction 
 
Throughout centuries different civilizations have used traditional fermentation 
(equivalency, traditional biotechnology), i.e., the artisan style to direct the 
transformation of different substances such as, milk, grape juice, flour wheat triticum, 
barley and hops... Using this empirical technology they increased the digestibility and/or 
stability of the perishable products e.g. enlarged the period of preservation.  During this 
time the underline causes of these transformations were unknown (e.g., the fact that the 
agents causing these processes were microorganisms). Today, microorganisms are used 
not only for fermentation transformations in the traditional sense, but also as tools in 
modern biotechnological processes where our ability to introduce genetic modifications 
enables us to use them for a broader range of applications.  For example, in 
fermentation transformations cells are used as hosts to produce biomolecules of 
commercial interest.  However, the public perception of the fermentation world 
continues to be that of an empirical area linked to the transference of recipes that grant 
the quality of natural things to the final product.  The reality is different, and because of 
scientific technological advances, we are under the conditions that allow us to obtain 
either traditional products or transformation of substances that enable the generation of 
new products in a highly controlled way.  The difference is that now the quality of these 
products must be guaranteed and maintained.  Before reaching this point, there has been 
a long challenging period for science with a large number of experimental designs and 
conceptual analysis in the search and identification of the cause-effect patterns enabling 
to reproduce the observed biological phenomena.  
 
The history of microbiology can be traced back to the development of the first 
microscope in 1684 by Leeuwenhoek, which allowed the visualization and 
identification of the different forms of microorganisms.  Evidence arose in favor of the 
thesis on the existence of polymorphic microbial life.  This thesis was finally refuted 
centuries later thanks to the works of Pasteur around 1857 and Koch, the isolation and 
sterility techniques contributed by Lister in 1878 and Tyndall, and finally the 
contributions by Winogradsky (1887) who developed a microscopic culture technique. 
 
In fact, once these techniques and experimental methods of culture, sterility, isolation, 
staining, and microscopic observation were available, the study of pure cultures was 
possible.  These advances allowed the progress of microbiology in the direction of the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

BIOTECHNOLOGY – Vol. IV – Microbial Dynamic Transformations: Basic Concepts - J.M. Bruno-Bárcena, E. Picó-Marco, J.L. 
Navarro, and J. Picó 

©Encyclopedia of Life Support Systems (EOLSS) 

monomorphic thesis. The controversy about the polymorphic microbial life was closed 
and the spontaneous generation theory refuted. This was the origin of the 
microbiological pure culture philosophy, which established the modern fermentation 
industry, as part of the new biotechnology. 
 
The transformations occurring during fermentation processes are complex phenomena, 
involving systems composed of a large number of interrelated elements.  Some 
characteristics associated with the concept of complexity are: large variety of 
relationships among these elements, the hierarchy of these relationships, the operation 
mode, and the organization of these elements in complex structures. In addition, 
systems can be classified as, Open systems, characterized by both energy and mass 
exchanges across the system boundary and Closed systems, which are characterized 
only by energy exchange. 
The discussion above applies both to natural systems (e.g. communities of organisms) 
as well as artificially created ones (e.g. computers). The concept of complexity 
generated during 20th century with the emergence of disciplines, such as the general 
systems theory and systems engineering, which try to analyze complex dynamical 
phenomena from the mathematical point of view. Thus, because these disciplines make 
intensive use of the qualitative theory of differential equations, dynamical optimization, 
etc., they allow qualitatively and quantitatively analyze biotechnological systems, make 
predictions about them and control them despite the presence of uncertainty and/or 
partial knowledge.    
 
The mathematical models both encode in their structure our heuristic knowledge about 
the process and provide new qualitative comprehension of the complete process from a 
biological perspective.  This enables us to reason out what would be the process 
behavior and what action would have to be to accomplish our control objectives, such as 
fixing a specific growth rate, obtaining a fixed productivity, etc. Mathematical models 
also imply quantitative information thus allowing not only to describe the general 
characteristics of behavior but also to predict the temporal evolution of the process. In 
brief, it is possible to find the factors that influence the final result and consequently 
control of the process.  
 
Whatever the application or the scale of the process with life cells, if one seeks 
reproducibility, a good description, and control of the phenomena it is necessary to 
combine knowledge from the biological sciences, mathematics, and process control 
engineering. 
 
One of the goals in the chapter is to convey a global picture encompassing the 
previously mentioned disciplines. In the following sections, we present in an integrated 
way some basic biotechnological and system engineering concepts, opening the doors to 
powerful mathematical and engineering tools. We intend the reader to be acquainted 
with the processes that are involved in both the traditional biotechnology as well as the 
new biotechnology. 
 
2. Growth and Microbial Kinetics 
 
Microbial kinetics is the study of all dynamic manifestations in the microbial world 
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such as growth, survival, death, adaptations, mutations, product formation, cellular 
cycles, and environmental and inter-specific interactions.  The examination of each 
characteristic will require precise premises because life organisms are extremely 
complex systems.  The study of the interactions between the organisms and the 
environment is traditionally known as Microbial physiology (see also – Basic Strategies 
of Cell Metabolism). Because of these interactions, processes and/or products of interest 
are generated, that may be exploited by biotechnology. 
 
Usually, the life manifestations are expressed as instantaneous rates (of growth, of 
substrate consume, of product generation) in cases where the dynamic characteristic 
under study show a continuous distribution in the population.  Kinetic studies require 
the perception of subjacent mechanisms of the process through the combination of 
experimental measurements and a mathematical model. 
Thus, the quantitative aspects of microbial growth require an essential tool such as the 
mathematical model (see also: Mathematical Modeling in Biotechnology) (see later 
Application to the bioreaction modeling). The model is the formal representation of our 
particular system and will be used to define the putative mechanism of the reaction 
under study. 
 
If this is the situation, the model will be useful and will enable the comparison between 
the observed phenomena and the prediction of the model.  This permits for the 
elimination of wrong hypothesis and even the simulation of the possible states of the 
system under different hypothesis. 
 
Therefore, microbial kinetics tries to explain the microbial world from knowledge of its 
temporal evolution, proposing general principles and models that describe rates and the 
mechanisms that play a role during the biological processes. 
 
The growth of a microbial population (see also: Microbial Cell Culture) may be 
modeled using the so called Black box models, which do not take into account the 
internal cellular variables or internal factors (the internal cellular processes).  These 
kind of microbial growth models are traditionally defined in terms of the cellular mass 
increment as a function of mass or cell number. 
 
In this context, the growth phenomena will also depend on the availability and existence 
in the surrounding environment of the necessary cell nutrients and the capability of its 
cellular internalization. Also, environmental parameters (temperature, pH, aeration...), 
must be permissive for the development of our organism (permissive variables or 
external factors).  Under these conditions, the cellular division process will be the result 
of a complex number of regulated steps and mechanisms, which control the flux of the 
required metabolites for the synthesis of macromolecules, which control the processes 
of chromosomal replication, and finally the increase in cellular mass (see also: Cell 
Thermodynamics and Energy Metabolism).  The timing of these events is regulated and 
coordinated by the cell and originate a cellular division process that is perfectly ordered. 
 
To carry out the quantitative study of the growth process simple methods have been 
developed that allow to determinate the populations growth. These methods must take 
in consideration the reproduction phenomenon of the cells of interest.  The prokaryotic 
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cells reproduce by binary fission, and it is not possible to differentiate a mother cell 
from its offspring.  Due to that, the maximum age of each cell equals the time between 
to two continuous replications.  The reproduction phenomena in eukaryotic organisms 
are different and we can distinguish between yeasts and filamentous fungi. Yeast 
duplicate by budding and posses a reproduction cycle with spore generation. Usually the 
division generates a daughter cell and a mother cell, which are different.  Thus, the 
culture will be heterogeneous with respect to the age and physiological stage.  
Filamentous fungi are more complex because on the one hand the reproductive cycle of 
these organisms occurs by sporulation; on the other, they also present growth by hyphae 
formation.  This generates a heterogeneous population both from the physical and from 
the physiological perspective.  All these phenomena can be analyzed from the 
mathematical point-of-view, although to do this we previously need to know some basic 
concepts. 
 
3. System and Signals 
 
To introduce the concepts that conform to the nucleus of the theory of modeling and 
control of dynamic systems, we will use two habitual examples within the 
biotechnology area. 
 
3.1. Mixture and Homogenization of Compounds 

 

 
 

Figure 1: Mixture and homogenization of compounds 
 
Figure 1 shows a system of mixture and homogenization of two compounds, which is 
composed by two fed deposits C1 and C2 and one for homogenization. Each fed deposit 
contains a concentration of the compounds A and B, respectively. The input volumetric 
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flow 1q  from the feed deposit C1 can be modified by manipulation of the opening 
degree of valve 1x . The flow 2q  from the feed deposit C2 cannot be adjusted.  From 
homogenization deposit is extracted a certain flow sq  can be extracted adjusting sx  (the 
exit valve), h  is the inside level of liquid. 
 
3.2. Batch Fermentation 
 
Figure 2 shows the results from different experiments of a yeast growth in batch mode. 
During these experiments, the environmental variables (temperature and pH) were 
maintained constant using controllers PID (proportional-integral-derivative).  
 

 
 

Figure 2: Batch fermentation 
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- 
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