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Summary 
 
Linear controllers are very successful in industrial applications. They imply linear time 
invariant plant models. This typically holds for small deviations from steady state 
operation. But for large deviations from steady state most plants exhibit ‘input 
constraints’ introduced by actuator saturation, and also ‘output constraints’ on 
secondary plant outputs. Typical examples are operational limits on current in DC-
drives with speed control, or on temperature differences in thermal power plants, etc. 
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Such design problems may be solved analytically by using the Maximum Principle from 
Optimal Control Theory. They may also be solved by numerical trajectory optimization 
in a receding time horizon frame (such as in Model Predictive Control). A third 
approach has been established much earlier by control engineers on an intuitive basis. It 
is a two step design procedure. A linear control system is designed for the small 
deviations operation. Then large deviations are applied. Any performance degradation is 
countered by nonlinear add-on’s to the linear control algorithm. This standard technique 
is known as ‘anti windup’ and ‘override’ design. This text is an introduction to the third 
approach. Three aspects of design and analysis are considered, that is structure, transient 
response, and nonlinear stability properties.   
 
1. Introduction 
 
1.1. Control Systems with Input Constraints 
 

 
 

Figure1. Control system with ‘input’ saturation (top), with ‘manual to automatic’ 
transfer switch (center), and with constraint on the secondary output 2y  (bottom) 
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Consider the system to be controlled, or ‘plant’ for short, in Figure 1. There are two 
(scalar) inputs, the manipulated or control variable u and the disturbance input v, and 
one (scalar) output, the controlled variable y. A typical example would be a tank with 
level y to be controlled to its reference value r, with persistent outflow v  and 
manipulated inflow u. Thus v  determines the operating point u .   
 
The saturations on the control variable ( )u t  are due to the working range of the 
actuator, which is always bounded by physical reasons to a low and a high limit. An 
often used model is  
 

( )   if   
   if   

 if   

lin low lin low

lin low lin high

high lin high

u SAT u u u u u
u u u u u

u u u u

= = <

= ≤ ≤

= >

    (1) 

 
This is the ‘input constraint’ situation, Figure 1 top. Here ‘input’ refers to the ‘plant’, 
and not to the closed loop system. 
 
In the range of operating conditions v  for which the feedback loop was originally 
designed, the plant shall finally stabilize at some equilibrium u :  
 

low low high highu u u u u+ Δ < < −Δ        (2) 
 
situated at a finite distance ( uΔ ) inside the working range limits of u. This allows 
regulation as specified for sufficiently small sized loop input changes (to the setpoint r 
and/or to the disturbance v), such that ( )u t  does not touch the limit values. This is the 
typical situation in control design. Here the model of the dynamic response may be 
linearized around the equilibrium, leading to a linear time invariant plant model and 
then to a linear controller, such as standard PID, state feedback, etc.   
 
For larger loop input changes however, the control variable u will saturate, either 
transiently or permanently. In the second case the control function will be permanently 
interrupted, and control objectives clearly cannot be met any longer. In other words this 
must be remedied by re-design of the actuator subsystem, such as expanded working 
range or additional actuators.  This case shall not be considered further here.   
 
The focus will be on the transiently saturating case, where a new equilibrium can be 
established with u  inside limits, see Eq. (1).  
 
1.2. Control Systems with Mode Switch 
 
Another basic nonlinearity in almost all control loops is the ‘Manual-to-Automatic’ 
control mode switch on ( )u t , Figure 1 center. 
 
’Bumpless transfer’ on ( )u t  is specified for Manual-to-Auto-mode switch-over and vice 
versa, independent of all past ( )u t . This requires some mutual output tracking feature 
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on manu  and autou . Note that the second control manu  may also be the output of a 
‘Programmable Logic Controller’ or another regulator. 
 
The most interesting phase is mainly the switching to the automatic mode, if state 
variables and the controlled plant output ( )y t  have not attained equilibrium values for 
the current setpoint. The subsequent transient may move u to its limits, or output 
constraints may be met.  
 
1.3. Control Systems with Output Constraints 
 
A third major class of basic nonlinearities is that of ‘output constraints’, Figure 1 
bottom. The ‘constrained output’ ( )cy t  is proportional to a single state variable of the 
plant or to a linear combination of those.   
 
Typical examples are speed and torque in electromechanical positioning loops, winding 
temperature in high performance DC-Servomotors, pressure and flow in hydroelectric 
plants, temperature and temperature differences (that is differential expansion, 
thermoshock, etc.) in thermal power plants, and many similar cases in chemical plants. 
In most situations, more than one constrained output is present, but only cases of one cy  
shall be considered here.   
 
Such output constraints are operational limits rather than ‘hard’ physical limits. 
Transgressing them is possible, but will add to low cycle fatigue of process equipment.   
Very large transgressions will cause spontaneous equipment failure, but this is to be 
avoided by separate safety functions and shall not be considered here.  
 
Output constraints are typically ‘soft’ constraints, that is there exists a continuous model 
of the response along the constraint values 

lowcy  or 
highcy  respectively, for small 

deviations within the span indicated by the ' sΔ .  
 

( )
low highc low c c highy y t y−Δ < < + Δ        (3) 

 
Thus feedback control is feasible along the constraints.   
 
In other words the main assumption is that ( )cy t  is controllable by ( )u t  along its 
constraint values in a sufficient working range. If not, no active control is feasible, and 
again the actuator subsystem will have to be re-designed.  
 
1.4. Design Approaches 
 
Three general design approaches are available for such nonlinear control problems:  
 

• The analytic approach considers the problem of optimizing the system trajectory 
to the new equilibrium subject to both input and output constraints by applying the 
‘Maximum Principle’ and produces an optimal control function ( )u t∗ . The 
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solution is primarily feedforward and thus requires an exact model of the system 
and all input signals. The optimization problem is termed ‘regular’ for input 
constraints only, and ‘singular’ if additional output constraints are present.  

• The numerical approach optimizes a discrete time control sequence ( )su kT∗  over 
a given time interval by iteration. Then the first control move is implemented. At 
the end of the sampling interval sT , the optimization is redone, using the actual 
state variables and/or outputs, and using the same time look-ahead intervals 
(receding horizon). This amounts to feedback. Such Model Predictive Control 
(MPC) is very successful in chemical industry on complex processes with many 
interacting inputs, outputs and relatively large time constants.  

• The intuitive approach has been developed by practitioners for handling such 
problems with available control equipment before theory and adequate computers 
were available. It is also called the two-step design procedure. 

 
As a first design step a linear control system is designed for small enough deviations 
around the operating point to meet the performance specifications. Any of the classical 
linear methods may be used. 
 
If this control system is also used for situations where input or output constraints are 
encountered, clearly then performance specifications can no longer be met. This is 
countered in the second design step by intuitive nonlinear add-on’s to the linear 
regulator. Some of them have turned out to be effective in most routine applications, 
and are now standard practice in industrial control design.  
 
This text will focus on the third approach. As such solutions have been developed on an 
empirical basis, a more theoretical analysis is needed to clearly establish properties and 
show the limits for their ‘good usage’. 
 
Three views will be used in the following, namely ‘Structure’, ‘Transient response’ and 
‘Stability properties’, because from experience it is crucial to have a good balance of 
these three views to obtain a good design result. Note that many discussions of 
alternatives have been about ‘Structure’ only, while the other views were not 
considered. 
 
Here the ‘input saturation’ and ‘output constraint’ situations are addressed. The 
‘bumpless transfer’ situation shall not be investigated here beyond mentioning that 
standard anti windup structures on the controller delivering ( )autou t  are being used. 
 
The most common case of PI control systems with input saturation shown in Figure 2 
top shall be studied first, demonstrating the ‘windup effect’ and different ‘anti windup’ 
features. Then plants of dominant higher order are considered, where ‘plant windup’ 
may appear, and suitable anti windup schemes are investigated. Finally ‘output 
constraint’ control systems of different forms are considered, such as with the ‘override’ 
structure shown in Figure 2 bottom. 
 
Concerning methodology, the investigation begins with a detailed specification of the 
problem and of a benchmark case. Then the linear controller is designed for the small 
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linear region around steady state. Next the nonlinear extensions are considered. Several 
current structure alternatives are introduced and their transient responses are discussed. 
 
But then any conclusions about the performance of the different alternatives drawn from 
the simulations are valid only for this benchmark case. Therefore extended simulations 
would be required to cover the spread of possible cases. 
 
This need can be satisfied more effectively by nonlinear stability analysis. It turns out 
to be a powerful tool to obtain a deeper insight beyond mere simulations. In this text the 
sector criteria shall be used. Their theoretical background is not covered here, and the 
reader is referred to the references. 
 

 
 

Figure 2. ‘Anti windup control’ for input saturation (top) and ‘Override control’ for an 
upward constraint on 2y  at 2up

r  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. III – Anti Windup and Override Control - Adolf Hermann 
Glattfelder and Walter Schaufelberger 
 

©Encyclopedia of Life Support Systems (EOLSS) 

Concerning references, there are several authoritative books on the underlying nonlinear 
stability analysis. The intuitive design approach to such control systems is covered in 
many Conference and Journal papers. No comprehensive overview in book form exists 
so far.  
 
2. PI-Control with Input Saturations 
 
2.1. Problem Statement and Test Cases 
 
The following set of specifications is used for the control system under study. It defines 
also a benchmark for testing controllers with alternate anti windup features.  
 
(a) The plant is given by its transfer function  
 

( )( )
( )

sDy s bG s e
u s sT a

−= =
+

       (4) 

 
This corresponds to the standardized plant model used by the Ziegler-Nichols and 
Chien-Hrones-Reswick design methods, (e.g. Aström, Hägglund, 1995). It covers a 
large percentage of industrial control cases, such as speed, level, pressure, concentration 
and temperature control. The small delay D shall represent the fast non-modeled 
dynamics of actuator, process and sensor, and will limit the attainable closed loop 
bandwidth to a realistic value.   
 
Neglecting the small delay yields the ’dominant first order’ plant model  
 

( )( )
( )d

y s bG s
u s sT a

= =
+

       (5) 

 
to be used for controller design. For the load input ( )v t :  
 

( )( )
( )v d

y sG s G
v s

= = −         (6) 

 
Numerical values to be used in the test cases are:  

: 1.0; :1.0; : 0.020;  and    : 1.0;   or  :=0.0;b T D a= = =    (7) 
 
which covers both standard cases ‘unity gain first order lag’ and ‘open integrator’. 
 
(b) The PI-controller shall be derived from the standard continuous form used in the 

Ziegler-Nichols rules, by replacing the continuous integration by its discrete Euler 
equivalent (e.g. Aström, Hägglund, 1995) 

 
1

1
1 1( ) 1 ( ) 1

1p p s
i i

zR s k R z k T
sT T z

−

−

⎛ ⎞⎛ ⎞
= + → = +⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

    (8) 
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For the test cases, the sampling time sT  is set to 0.020 [s]sT = .  
 
(c) The PI-controller settings pk  and iT  are obtained by pole placement using the 

‘dominant first order’ plant dynamics ( )dG s  and the continuous time form of the 
controller ( )R s . This implies sT  and D to be sufficiently short. From the closed loop 
characteristic equation  

 
!

2 20 1 ( ) ( ) ( )p p
d

i

a k b k b
R s G s s s s

T T T
+

= + = + + = +Ω     (9) 

 
then  
 

21 12 ; and for 0; 2 ;
2p p

i p i

Tk b T a a k b T
T k b T

Ω Ω
= Ω − = = = Ω =

  
(10) 

 
Setting the closed loop bandwidth to 5 [rad/s]Ω =  provides a sufficient margin with 
respect to both the sampling frequency from sT  and the ‘ultimate frequency’ from D. 
And it produces realistic values for the controller settings (with 0a = : 10pk = ; and 

0.40iT = ).  
 
From experience the linear control loop must be designed for good but realistic 
performance. Not respecting this (obvious) sT  rule may lead to very misleading 
conclusions about the performance of anti windup schemes.  
 
(d) The following test sequence shall be applied to the closed loop  
 

• Initially ( 0index ) the loop is to be at ’standstill’ conditions: 
  0 0 0 00;  and 0;  that is 0;  and u 0;r v y= = = =  

• At time 1T , a setpoint step to 1 0.95r =  is applied while there is still no load, that is 

1 0v = . 
• Then at time 2T , a setpoint step to 2 1.0r =  is applied while there is still no load, 

that is 2 0v = . This will show the small signal (linear) closed loop response. Then 
at equilibrium, a plant input 1 1u a r= ⋅  results. 

• At time 3T  a load step 3 0.90v =  is applied, while the setpoint is constant, 

3 2 1r r= = ,  
• and finally at time 4T , a full load reversal is applied 4 3v v= − , again with constant 

setpoint 4 3 1r r= =  .  
 
No high frequency measurement disturbance shall be considered here, but is a problem 
in some applications.  
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(e) The actuator saturation is specified as follows:  
 
for 0 : 1.0; 1.0;low higha u u= = − = +      (11) 

for 1: 0.0; 2.0;low higha u u= = − = +      (12) 
 
This provides the same ’margin to maneuver’ for setpoint steps around the ‘ 1r =  and no 
load’ condition for both values of a  introduced above. Also 3 0.90v = +  yields a 
realistic steady state control margin (see Eq. (2)) of 0.10high lowu uΔ = Δ =  for the load 
swings. 
 
- 
- 
- 
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