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Summary 
 
Various recursive identification algorithms are presented for the discrete-time stochastic 
time-invariant systems. The convergence issue is addressed: Sufficient conditions for 
strong consistency of various recursive estimates are given; Convergence rates are also 
provided for LS and ELS estimates. The diminishing excitation method is introduced, 
by which the strong consistency of parameter estimates can be achieved for a feedback 
control system. 
 
Tracking a time-varying parameter, i.e., identifying time-varying coefficients in 
discrete-time, stochastic linear systems is an important problem not only for system and 
control but also for signal processing. KF, LMS and RLS are the most commonly used 
recursive algorithms in the area. The basic properties are described for these algorithms. 
Finally, besides the historical issue and continuous-time systems briefly addressed in 
“Concluding Remarks”, some open problems are pointed out as well. 
 
1. Introduction 
 
Many real-world phenomena can be approximately described by linear models which 
linearly relate system outputs with inputs by differential or difference equations. The 
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approximation errors in some cases may be modeled as random variables. As a result, 
the real system is modeled by a linear stochastic difference (or differential) equation 
with unknown parameters to be determined. In this case, the topic of system 
identification is to estimate or define the unknown parameters contained in the model on 
the basis of the input-output data derived from the observation on the real system under 
consideration. If a batch of input-output data is collected from the system and used to 
estimate the model parameters, then such a procedure is called o -line identification. If 
the estimate for model parameters is updated by a recursive algorithm at each time when 
some new data becomes available, then such a procedure is called recursive 
identification. 
 
The unknown parameters in the model may be the model-equation coefficients, orders, 
and time delay. Estimates for orders and time delay for a linear system are normally 
derived by minimizing some information criteria such as AIC, BIC, ICΦ  and CIC etc, 
but they are hardly to be on-line and recursive. Therefore, in all recursive identification 
methods the system orders and time delay or their upper bounds are usually assumed to 
be known, and the main effort of system identification is devoted to estimate the system 
coefficients by which the system input and output are related. 
 
To be precise, let us consider the discrete-time case. Let ,l m

k ku y∈ ∈  be system 
input and output, respectively. The real system may be modeled by 
 

1 1 2 1 1 1 2 1

1 1k

k k k p k p k k

qu q k

y A y A y A y B u B u

B ε
+ − − + −

− + +

= + + + + +

+ + +
, (1) 

 
where A1, A2, ..., Ap, B1, B2, ..., Bq are unknown coefficient matrices, 1k+ε  characterizes 
the approximation error, and it may be modeled as an m-dimensional random vector. In 
this case, (p, q) are the system orders, or upper bounds for the true orders. Since the 
latest input that effects on 1ky +  is ku , the time delay for system (1) is one. 
 
Notice that Ai and Bj, are m×m and m×l matrices, respectively, i = 1, ..., p, j = 1, ..., q. 
Let us combine all unknown coefficients to a big matrix θ : 
 

1 2 1 2[ , ,..., , , ,..., ]T
p qA A A B B Bθ =  (2) 

 
and denote the input-output data by  
 

1 1 1 1[ , ,..., ,..., ]T T T T T T T
k k k k p k k k qy y y u u uφ − − + − − += , (3) 

 
where TX  denotes the transpose of matrix X (or vector X). 
 
By Eqs. (2) and (3), the model (1) can be rewritten as  
 

1 1
T

k k ky θ φ ε+ += + . (4) 
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Recursive algorithms are used to estimate the unknown coefficient matrix θ  by using 
the input-output data, and the estimate is on-line updated while receiving the new input-
output observation. 
 
When θ  is time-independent, the system (4) or (1) is called time invariant system. But 
θ  may vary with time k, i.e., kθ θ= , then the system 
 

1 1
T

k k k ky θ φ ε+ += +  (5) 
 
is called time-varying system. 
 
The noise 1k+ε  in Eq. (1) can also be modeled, for example, 1k+ε  may be driven by a 
sequence of mutually independent random vectors { kw } (or, more general, a martingale 
difference sequence), i.e., 
 

1 1 1 1k k k r k rw C w C wε + + − += + + + . (6) 
 
This kind of noise { }kε  is called MA (moving average) process, and system (1) with 
{ 1kε + } being defined by Eq. (6) is called ARMAX system, where AR (autoregression) 
implicates the part in Eq. (1) containing { ky }, and X the part with input terms. If 0ku ≡  
and { }kε  is given by Eq. (6), then Eq. (1) is called ARMA process. 
 
In what follows, the typical recursive estimation algorithms will be given for estimating 
the constant matrix θ  in Eq. (4), and it will be shown how to make the estimates 
converge to the true coefficient matrices. The convergence rates will also be presented. 
For the time varying system (5), recursive estimation algorithms for tracking the time-
varying coefficient kθ  will be addressed. In conclusion, some open problems will be 
pointed out. 
 
2. Recursive Algorithm for Constant Coefficients. 
 
2.8. Least Squares (LS) 
 
For system (4) the parameter matrix θ  is to be estimated based on 
{ 1, , 1, 2,...,k ky k nφ+ = }, n = 1, 2, ... A common and natural way is to estimate θ  by 
minimizing the sum of squared errors, i.e., the estimate for θ  is selected by minimizing 
the criterion 
 

2
1 1

0

ˆ ˆ( ) , 1, 2,...
n

T
n k k

k
V y nθ θ φ+ +

=
= − =∑ || ||  (7) 

 
with respect to θ̂ . The minimizer denoted by n̂θ is called the LS estimate. 
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At time k, the model approximation error 1kε +  is unknown. Therefore, T
kθ φ is the best-

predicted value for the output at time k + 1, and hence 1
ˆT

k ky θ φ+ − can be viewed as a 

prediction error for the system output. To minimize 1
ˆ( )nV θ+  is to minimize the 

prediction errors. In other words, the estimate for θ is chosen such that the identified 
model best fits the observed data. 
 
The criterion 1

ˆ( )nV θ+  is a quadratic form with respect to θ̂ . Consequently, there exists a 

unique minimum for 1
ˆ( )nV θ+  which is achieved at 

 
1

1 1
0 0

ˆ
n n

T T
n i i i i

i i
yθ φθ φ

−

+ +
= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑  (8) 

 
provided the inverse exists. This is the well known least-squares (LS) estimate. 
Note that the LS estimate 1n̂θ +  given by Eq. (8) depends on n + 1, the data size, and is 

in an o -line form. For the on-line identification, it is convenient to express { k̂θ } in the 
recursive way: 
 

1 1
ˆ ( )T T
k k k k k k k ka P yθ θ φ φ θ+ += + −  (9) 

 

1
T

k k k k k k kP P a P Pφ φ+ = − , (10) 
 
 1(1 )T

k k k ka Pφ φ −= + . (11) 
 
This is the recursive LS algorithm for identifying system (1) or (4) given initial values 

0θ̂  and 0P . 
 
The LS estimate may give a good estimate for θ  only in the case where { kε } is a 
sequence of uncorrelated random vectors. If { kε } is a correlated sequence, the LS may 
not give a satisfactory estimate. This is why one has to apply the extended least squares 
estimate. 
 
2.9. Extended Least Squares (ELS) 
 
Now, assume 1kε +  is given by Eq. (6), i.e., the real system is modeled by an ARMAX 
process 
 

1 1 1 1

1 1 1 1

k k p k p k

q k q k k r k r

y A y A y B u

B u w C w C w
+ − +

− + + − +

= + + + +

+ + + + +
 (12) 

 
and all matrix coefficients A1, ..., Ap, B1, ..., Bq, C1, ..., Cr have to be identified. In this 
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case, similar to Eq. (2) the unknown coefficients are still denoted by θ . 
 

1 2 1 1[ , ,..., , ,..., , ,..., ]T
p q rA A A B B C Cθ = . (13) 

 
Since { kw } is not observed, θ  cannot be estimated by Eqs. (9)-(11), if kφ  is simply 

extended by adding 1[ ,..., ]T T
k k rw w − + . It is a natural way to replace e.g. kw  by its 

estimate 1ˆ T
k k k kw y θ φ −−  and define 

 

1 1 1ˆ ˆ[ ,..., , ,..., , ,..., ]T T T T T T T
k k k p k k p k k ry y u u w wφ − + − + − +=  (14) 

 
Then the recursive algorithm (9)-(11) with kφ  defined by Eq. (14) can still be used to 
estimate θ  given by Eq. (13). This is the extended least-squares (ELS) estimate for θ  
given by Eq. (13). 
 
- 
- 
- 
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