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Summary 
 
The standard mathematical model of a controlled system is usually given by an ordinary 
differential equation with additional parameters in its right-hand side – the “controls”. 
These are to be selected so as to ensure a pre-specified course (“goal”) of the process on 
one hand and to optimize a given cost function (“performance index”) on the other. This 
leads in general to variational problems with constraints.  
 
In applied problems the constraints may often be given in the form of inequalities, while 
the cost functions and other items may be non-smooth. Such problems require 
techniques which are beyond the scope of classical calculus of variations.  
 
The set of necessary conditions for optimality in such problems are given by 
Pontryagin’s Maximum Principle and its modifications which generalize classical 
methods. The present article describes the Maximum Principle as well as the range and 
scheme of its application. It also indicates some possible generalizations. 
 
1. Introduction 
 
Pontryagin’s Maximum Principle is a proposition which gives relations for solving the 
variational problem of optimal open-loop control. In general that is a non-classical 
variational problem which allows treatment of functions and constraints that are beyond 
those considered in classical theory, but are very natural for practical problems. 
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The Maximum Principle was formulated in 1956 by L.S. Pontryagin (Lev Semenovich 
Pontryagin (1908 – 1988) – Russian mathematician, Member of the Academy of 
Sciences of the USSR, distinguished world-wide for his works in topology and 
differential equations as well as in control theory and differential games) and further 
developed by himself and his associates, as well as in many other investigations.  
 
It was motivated by new problems in automation and aerospace engineering, initiating 
the “mathematical theory of controlled processes”. The maximum principle was and is 
broadly used for solving applied problems of control and other problems of dynamic 
optimization. It has triggered numerous generalizations and applications. The basic 
necessary conditions from classical Calculus of Variations follow from the Maximum 
Principle. 
 
In many Western publications the Maximum Principle of Pontryagin is also referred to 
as “the Minimum Principle” (by changing signs in some of the upcoming relations the 
“maximum condition” of the sequel may be rewritten in the form of a minimum 
condition). 
 
2. An Example 
 
Suppose a car of unit mass is free to move along a horizontal track (the axis x ) under 
the influence of a control force (a thrust) 1u (t)  being also subject to a frictional force 

2k u ,+  so that its motion is described by the differential equation 
 

2

2 12
d x dx(k u (t)) u (t),

dtdt
+ + =  

 
or, taking 1 2x x, x dx / dt,= =  by the system 
 

1 2 2 2 2 2 1x x , x kx u (t)x u (t).= = − − +� �  
 
Here 2k 0 u (t) 1,≤ ≤>0;  while 1u (t)  is unbounded. 
 
The forces 1u (t) , 2u (t)  are the controls which have to be selected. The control task is 

to move the car from starting point 1 2x (0) 0, x (0) 0= =  to target point 

1 2x (T) a, x (T) 0,= =  ensuring a “soft” stop with velocity zero. 
 
The controls 1u (t) , 2u (t)  have to be chosen such that the control task would be 
fulfilled with minimum fuel consumption, presuming the consumption is proportional to 
the integral 
 

T 2
10

J u (t)dt.= ∫  
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Here to move we have to consume the  fuel 1(u (t))  while an additional regulation of the 

motion may be done by applying the brakes 2(u (t)) . We presume that applying the 

brakes does not affect the fuel consumption. The range of force 2u (t)  is bounded. 
 
Thus the problem is to find the optimal controls 1u (t) , 2u (t)  while fulfilling the task 

and minimizing the fuel consumption J . Here the force 2u (t)  does not explicitly affect 
the consumption J , but applying it at some time may allow to switch off the thrust 

1u (t)  and thus help to save fuel. The given problem is a variational problem, but is not 
directly treated in classical theory because of the inequality constraint on 

2u (t) (classical problems usually deal only with equality constraints). 
 
In order to solve non-classical variational problems one may apply the Maximum 
Principle. 
 
We may now proceed with a more general formulation. 
 
3. The Problem of Optimal Control 
 
A typical problem of optimal open-loop control sounds as follows. Given are the vector-
valued system equations 
 
dx f (x,u),
dt

=   (1) 

 
or, in more detail, 
 
dx f (x,u), ( 1, , n),= = …i

i i
dt

 

 
where nx \∈  is the n-dimensional state of the system and mu \∈  - the m-dimensional 
control. Also given are the starting point (0)x  and the terminal point (1)x : 
 

(0) (1)x(0) x , x( ) x .= τ =   (2) 
 
Relations (2) are the boundary conditions. The range of the control is the constraint 
setP  
 
Problem I of Optimal Open-Loop Control – OOLC- is to find such a function u(t)  

which would steer the system from starting point (0)x  to terminal point (1)x( ) xτ =  
under the constraint 
 
u(t)∈P ,  (3) 
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while minimizing an integral cost functional 

00 u
J(x( ), u( )) f (x,u)dt min

τ
⋅ ⋅ = =∫ .  (4) 

 
Here x( )⋅  stands for the whole function [ ]x(t), t .τ∈ 0,  The terminal point (1)x( ) xτ =  
may be substituted by a terminal target set M  and the time τ  may be either fixed or 
free. Note that the term “cost functional” is usually applied to problems of minimization 
while for maximization problems the term “performance index” is more common. 
 
The fact that the control u u(t)=  is selected among functions of time t  indicates that 
we have the problem of open-loop control. This is in contrast with problems of closed-
loop or feedback control where the control is chosen as a function u u(t, x)=  of both 
time and state. 
 
The problem in which 0f (x,u) 1≡  and the time τ  is free brings us to uJ min .= τ =  
This is the time-optimal control problem where one has to select a control u(t)  which 

steers the system from (0)x  to (1)x  in minimal time. 
 
We shall say that u(t), x(t)   is a pair if u(t)  is the control which generates the trajectory 

x(t)  of (1), with (0)x(0) x .=  
 
The solution to the Problem of OOLC is the pair 0 0{u (t), x (t)},  where 0u (t)  is the 

optimal control and 0x (t)  - the optimal trajectory. Clearly, the optimal control must 
satisfy the constraint (3) and the optimal trajectory must satisfy the boundary condition 
(2). The pair 0 0{u (t), x (t)}  must minimize the cost criterion (4). (In this chapter we 
always presume that our problem is to minimize J.  If necessary to maximize J,  we 
must have to minimize - J ). 
 
Loosely speaking, Pontryagin’s Maximum Principle gives the necessary conditions for a 
control  0u (t)  to be the OOLC. 
 
4. A More Rigorous Formulation of the Problem 
 
This section is for a more scrupulous reader, and may be skipped. (One should realize, 
though, that a truly rigorous mathematical description should be even more detailed 
than here). 
 
For a more rigorous mathematical setting one should first describe the type of functions 

0f (x, u), f (x, u)  (the class of system models and cost functions) and the class of 
controls u(t)  for which the problem would make sense and would be solvable through 
the proposed technique. 
 
The standard conditions for f (x, u)  are that the components f (t, x)i  of 
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f (t, x), i 1, , n,= …  as well as the scalar function 0f (t, x ),  are continuous in both 
variables x, u  and continuously differentiable  in x, u . The admissible controls u(t)  
are assumed to be piecewise-continuous, with finite number of discontinuities. To be 
precise, in the forthcoming formulations they are assumed to be right-continuous with 
no discontinuities at the starting and final instances of time. The class of such functions, 
constrained by (3) and defined within the interval [0, ],τ  is denoted as U.  
 
The constraint set P  is taken to be closed and bounded. This is typical for engineering 
problems. The admission of closed constraint sets makes the variational problem (1)- 
(4) of optimal control non-classical and places it beyond the scope of classical Calculus 
of Variations. 
 
In variational problems one distinguishes local minima from global minima and strong 
minima from weak minima. A functional J(x( ) , u( ))⋅ ⋅  is said to attain a strong local 

minimum at 0 0x ( ), u ( )⋅ ⋅  if there exists an number  δ>0  such that the inequality 
 

0 0J(x ( ), u ( )) J(x( ) , u( ))⋅ ⋅ ≤ ⋅ ⋅  
 
is true for all trajectories x(t)  that satisfy the boundary condition (2) and the inequality 
 

0x(t) x (t) t− ≤ δ, ∀ τ∈[0, ],  

 
being generated by controls u( )⋅  that are in U  and deviate from 0u ( )⋅  on a finite 
number of intervals of small total measure. (Such “variations” of controls are known as 
“needle-type” and were introduced by J.McShane). 
 
Pontryagin’s Maximum Principle is the statement of necessary conditions for a strong 
local minimum (maximum) in the problem of OOLC. 
 
What we avoid to discuss here is whether the solution to the Problem of OOLC does 
exist at all in the class of controls U . This is a separate question of controllability of 
system (1), (3) (see Section 7, Definition I of this article) and of the properties of 
function 0f (x, u),  which have to ensure that the minimum of integral cost (4) may be 
attained within the class U .  
 
The formulation of the maximum principle presumes that the solution to the Problem of 
OOLC does exist indeed. 
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