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Summary 
 
The Lie bracket is a map which assigns a third tangent vector field to two given tangent 
vector fields, all defined on an abstract manifold. Therefore, this chapter starts with an 
introduction into the concept of n-dimensional abstract manifolds and special pairs of 
manifolds, called bundles. These constructions are necessary to derive the tangent 
bundle of a manifold, the container of all tangent vector fields. The Lie derivative of a 
smooth function is a linear map that respects the Leibniz rule; its commutator is the Lie 
bracket. But the Lie bracket is also a differential operator that acts on vector fields, that 
tells us whether flows on manifolds commute, that helps to find hidden constraints in 
systems of linear partial differential equations. The last property is contained in the 
theorem of Frobenius. After the discussion of these topics and their significance for 
control, a short example concerning the controllability of a nonlinear system shows how 
the developed mathematical machinery helps to solve problems in nonlinear control.  
 
1. Introduction 
 
When engineers investigate systems which are described by a set of ordinary differential 
equations, they have to face the problem to find a suitable space which contains the state 
and the input of the system. Unfortunately, the choice of a Euclidean space is not 
possible in general, and one has to pass to a more abstract concept. E.g. one cannot 
describe all rotations in the 3-dimensional space globally by 3 coordinates, although a 
local description is always possible. Abstract manifolds overcome this problem, since 
they behave locally like a piece of an Euclidean space, but they take into a count the 
global nonlinear behavior. This approach implies that one has to extend the calculus 
from the Euclidean space to manifolds. Choosing special coordinates for a problem 
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allows us to perform all the investigations in the usual way, but one has to face the 
problem that a canonical choice of coordinates does not exist. Roughly speaking, all the 
calculations must be meaningful for any coordinate system. This idea leads to a 
coordinate free representation of dynamic systems. It will turn out that the systems 
under consideration can be represented by the help of special mathematical objects, 
called tangent vector fields on abstract manifolds. This implies that differential 
geometry becomes the main tool for the description and the design of nonlinear systems.  
 
The Lie bracket is a map which assigns two tangent vector fields to a third one. The 
importance of this map follows from the fact that this map appears in problems which 
do not seem to be linked to each other. E.g. the Lie bracket measures the change of a 
vector field moving along a curve, it is the commutator of two differential operators, it 
describes the hidden constraints in systems of linear partial differential equations, it 
measures the lack of commutability of special maps called flows, etc. 
 
For control purpose, the Lie bracket comes into play, if we look for nonlinear state-
and/or input transformations. To get a feeling for this problem, we take a look at the 
simple n-dimensional linear time invariant system 
 

1
, 1,...,

n
i j

j j
j

x a x i n
=

= =∑ , 

 
with i

ja ∈ . Let us consider the state transform 
 

1

n
i i j

j
j

z T x
=

= ∑ , (1) 

 
i
jT ∈ . By taking the time derivative of (1) we get, of course 

 

1

n
i i j

j
j

z T x
=

= ∑ . (2) 

 
The important observation is that we can choose the transformation (2) for the 
derivatives of the coordinates freely and derive (1), the transformation for the 
coordinates, in a trivial manner. Let us consider the nonlinear system  
 

( ), 1,...,i ix f x i n= =  
 
with smooth functions if together with the nonlinear state transform  
 

( )i iz x= ϕ . (3) 
 
Taking again the time derivative of (3) we get  
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1
( )

n
i i j

j
j

z T x x
=

= ∑ , (4) 

 
where the functions i

jT meet 
 

( ) ( )i i
j jT x x

x
∂

= ϕ
∂

. (5) 

 
Here, it is not possible to choose the functions i

jT in (4) freely, since the functions 
i
jT must satisfy (5). Therefore, given (4) we have to check, if is possible to find (3). 

Additionally, we have to solve a system of partial differential equations to derive 
iϕ from i

jT . Now, the Lie-bracket allows us to construct admissible choices for i
jT and 

tells us, whether these partial differential equations have a non trivial solution.  
 
This chapter is organized as follows. Section 2 gives an introduction to the concept of 
abstract manifolds and special pairs of manifolds, called bundles, and develops the 
basics for doing calculus on manifolds. Section 3 presents the Lie bracket and shows 
that this bracket belongs to a family of differential operators that operate on geometric 
objects defined on a manifold. Although the Lie bracket is an important map the 
importance for control is strictly related to the theorem of Frobenius which is presented 
in Section 4. A short application to the problem of controllability of nonlinear systems 
is given in Section 5. Finally, this chapter finishes with some remarks concerning 
differential geometry and the literature. 
 
2. Basics of Manifolds and Bundles 
 
Curves and surfaces in the Euclidean space were studied since the earliest days of 
geometry. However, the discoveries of Gauss profoundly altered the course of 
differential geometry and pointed the way to the concept of an abstract manifold. 
Therefore, we give the basic definitions and present some essential results concerning n-
dimensional abstract manifolds. One can construct more complex manifold from 
simpler ones. Fibered manifolds are an import case; it will turn out that the 
generalizations of the tangent plane of a surface, the so called tangent bundle is a special 
fibered manifold. Therefore a short introduction to fibered manifolds and bundles is also 
given in Section 2.1. The subsection after the next presents the concept of tangent 
bundles, tangent vectors for abstract manifolds and introduces important maps on 
manifolds, called flows.  
 
2.1. Manifolds  
 
A manifold is, roughly speaking, the generalization of an n-dimensional smooth surface 
in the space m with m n≥ . Although one can show that every smooth n-dimensional 
manifold can be embedded in 2 1n+ , which was proven by Hassler Whitney, we will 
give a more abstract definition of a smooth manifold that avoids the reference to any 
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embedding in the space k for some k .  
 
Definition 1 A smooth n-dimensional manifold is a set M , together with a countable 
collection of subsets α ⊂U M , the coordinate charts, and one-to-one maps 

: Vα α α→Uφ onto connected open subsetsVα
ν⊂ , the local coordinate maps, such 

that the following properties are satisfied: 
 

1. The coordinate charts cover M , or α α= ∪M U is met.  
 

2.  .Let U denote the intersection {}α = ≠∩U U Uβ .The composite map       

 : ( ) ( )−1
α α →U Uβ βφ φ φ φ is a smooth (infinitely differentiable) function.   

 
3. For any pair of different points , ,p q p qα ≠U U∈ ∈ β there exist open subsets 

,W Wα β such that ( ) , ( )p W V q W Vα α α⊂ ⊂∈ ∈β β βφ φ and ( ) ( ) {}W W−1
α α =∩ β βφ φ  

are met.  
 
Some facts are worth mentioning at this stage. The coordinate charts allow us to define 
a topology for M by declaring the sets ( )W−1

αφ to be open for any open 

( ) nW α α⊂ ⊂Uφ . In terms of this topology, the third requirement in the definition 
above says that M has the Hausdorff separation property. The degree of differentiability 
of the transition functions −1

αβφ φ determines the degree of smoothness of the manifold 
M . For the sake of simplicity, we will consider only smooth manifolds here. Besides 
the basic coordinate charts : Vα α α→Uφ , one can add additional coordinate charts   

: nV→ ⊂Uφ subject to the requirement that the transition functions 
1,−1 −

α αφ φ φ φ are smooth for any α on the overlap ( )α α∩U Uφ . In this case the chart 
: V→Uφ is said to be compatible with the basic charts. Furthermore, the maximal 

collection of all compatible charts is called an atlas of M . 
 
The simplest case of an n-dimensional manifold is the space n . Let 1( ,..., )nx x x= be 

a coordinate system of n and let iϕ be the coordinate functions of n which map a 

point nq ∈ into by ( )i ix q= ϕ . Given a n-dimensional manifold M with coordinate 

charts αU and coordinate maps αφ , then the composite mapping i
αϕ φ maps M into 

by ( )i ix pα= ϕ φ . We call the functions ( )i ix pα= ϕ φ coordinate functions ofM . 
Although we denote different objects, here the coordinates and the coordinate functions, 
by the same symbol, there should be no confusions. Furthermore, this allows us to 
dispense the explicit reference to a local coordinate chart. We will say, 1( ,..., )nx x x= is 
a local coordinate system of M , which is an abbreviation that there is a local coordinate 
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map : Vα α α→Uφ with an open subset nVα ⊂ and a coordinate chart αU such that 

each p αU∈ has the local representation ( )i ix pα= φ . Of course, we know the 
representation of p in any other compatible chart by the conditions of definition 1. 
 
Let us consider the n-dimensional unit spheres nS , then it is straightforward to see that 
the n-dimensional spheres 
 

1
2

1
( ) 1

n
i

i
x

+

=
=∑  

 
are smooth manifolds embedded in 1n+ , since the sets   

1 1
1{ | 0}, { | 0}n n i n n i

i n ix x x x+ +
+ += > = <∩ ∩U US ∈ S ∈ are coordinate charts 

with the projections on the planes 0ix = as coordinate maps 1,i n i+ +φ φ . Whereas the 2-
dimensional cone 
 

1 2 2 2 3 2( ) ( ) ( ) 0x x x− − =  
 
embedded in 3 is no manifold, because the origin does not have a neighborhood αU , 

which can be mapped one-to-one onto an open subset of 2 . A less trivial example of a 
smooth n-dimensional manifold is the set of all lines through the origin 0 in 1n+ , which 
is called the real projective space nP . 
 
Having the concept of manifolds at our disposal, we may consider functions 

:f →M on the n-dimensional smooth manifold M . Let αU be a coordinate chart 

with coordinate map αφ , then ( ) ( ( ))f x f x−1
α= φ is a map : ( )f α α →Uφ . We call 

f differentiable (smooth) at p αU∈ , if and only if (iff) f is differentiable (smooth) at 
( )pαφ . It is easy to see that this property does not depend on the choice of αU . The 

important set of smooth functions on M is denoted by ( )C∞ M . Obviously, we have 

( )i C∞
α Mφ for a smooth manifold. The reader is asked to reflect twice on this 

construction. Roughly speaking, we can do calculus like in n , if we confine our 
calculations to the suitable charts and take care that the calculations are meaningful also 
in other charts. Now, we are ready to extend this idea to maps between manifolds.  
 
Let ,M N be two smooth m- and n-dimensional manifolds. A map :f →M N is said to 
be smooth, iff its local representation is smooth for every coordinate chart. In other 
words, let αU ,Vβ be charts of M and N with coordinate maps ,α βφ φ such that, 

( )f α ⊂U βV is met, then f is smooth if the composite map 
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: ( ) ( )f f −1
α α α= ϕ → ϕUβ β βφ φ V is smooth. The smooth map f can be used to 

transfer a smooth function ( )g C∞ N∈ from N to M by 
 

( ) :f g g f∗ = →M . (6) 
 
The function ( ) ( )f g C∗ ∞ M∈ is also called the pullback of g by f . Only if 

:f →M N is a local diffeomorphism, f has a smooth inverse 1f − locally, then  we can 
transfer functions from M toN .  
 
Let 1( ,..., )mx x x= and 1( ,..., )ny y y= be coordinate systems for the two smooth m- and 
n-dimensional manifolds ,M N , then we may rewrite the map 

:f →M N as ( )i iy f x= using these coordinates. Following the ideas above, we are 

able to define the rank of f as the rank of the Jacobian [ ]i
j

x
f∂ . Again, the reader may 

convince himself/herself that this definition of the rank is independent of the choice of 
the charts. Additionally, the following theorem tells us that the maps f between 
manifolds with constant rank, also called regular maps, admit a very simple form. 
 
Theorem 2 Let ,M N be two smooth m-and n-dimensional manifolds. Let k be the rank 
of the regular map :f →M N at p M∈ , then there exists coordinates 

1( ,..., )mx x x= near p and coordinates 1( ,..., )ny y y= near ( )f p such that f takes the 
canonical form  
 

1,..., , 0,...,0k

n k

y x x
−

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
in ,x y . 
 
This theorem is an easy consequence of the implicit function theorem, and will not be 
proven here.  
 
One-to-one maps between manifolds can be used to parameterize submanifolds, like we 
parameterize curves and surfaces in 3 . Let N be a smooth manifold, then a 
submanifold of N  is a subset ⊂M N together with a manifold M and a smooth one-to-
one map :f →M M with maximal rank. In particular the dimensions of ,M M coincide 
and do not exceed the dimension of N . Unfortunately, this definition of a submanifold 
admits some irregularities that we wish to avoid. Therefore, we define now the more 
restrictive regular submanifold.  
 
Definition 3 Let N be a smooth n-dimensional manifold and M be a submanifold ofN . 
We callM a regular m-dimensional submanifold, iff for each p M∈ there exists a chart 
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, pU U∈ with the coordinate mapφ such that in local coordinates 1( ,..., )nx x x= the 
conditions 
 

( ) 0, 1,...,m i m ix q i n m+ += = = −φ  
 
are met for all q U∈ . 
 
The coordinates of definition 3 are also called flat coordinates. Furthermore, the 
parameterization of the submanifold is replaced by the natural inclusion.  
 
2.1.1. Fibered Manifolds and Bundles  
 
Let us consider the two smooth manifolds ,M N and a smooth map :f →M N . 
Frequently, one considers the graph of f instead of f itself. The graph of f is the new 
function gr :f → ×M M N defined by gr ( ) ( , ( )),f p p f p p= M∈ . The product 

×M N is called the total space. This set contains the domain M and the co-domain 
N of the map f , the domain is also called the base space. This idea can be extended to 
a new structure.  
 
Definition 4 A fibered manifold is a triple ( , , )πE B  with the manifolds E , 
dim( ) , ,m n= +E B  dim( ) m=B and a map :π →E B  that is onto with rank m. The 
manifold E is called the total space, the map π the projection and the manifold B the 
base space. The subset 1( )p p−=F π of E is called the fiber over p B∈ . 
 
In many cases the idea of a fibered manifold without any additional restriction is 
slightly too general. E.g. different fibers may have totally different topological 
structures. This problem may be resolved by insisting that the fibered manifold look 
rather like a product of manifolds and the resulting object is called a bundle. 
 
Definition 5 A fibered manifold ( , , )πE B  is a bundle, iff there exists a manifold F , 

called the typical fiber, and a map 1: ( )p p
− → ×Ψ U U Fπ defined on a neighborhood 

pU of p∈B  such that 1 1pr (pr ( , ) , )pp q p q= =Ψ F∈π and , pF F are diffeomorphic 
for all p . 
 
On a bundle we can introduce adapted coordinates ( , )x u at least locally, where 

, 1,...,ix i m= are coordinates of the base B and , 1,...,u nα α = are coordinates for the 
typical fiber. We get even a simpler picture, if we look at x as the independent and u as 
the dependent coordinates. Obviously, we have ( , )x u x=π . A fibered manifold 
( , , )E B π which is diffeomorphic to the bundle 1( , , pr )×B F B is called trivial. The well 
known Möbius band can be represented by a fibered manifold which is, of course, 
nontrivial. If the typical fiber of a bundle is a linear space, then the bundle is called 
vector bundle. An important example of a vector bundle is, e.g. the tangent bundle 
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( )T M of the manifold M which will be introduced in the following subsection.  
 
This subsection started with the graph of a map between manifolds. Now, we are ready 
to give the adequate definition for fibered manifolds.  
 
Definition 6 Let ( )πE,B, be a fibered manifold. A map : →σ B E is called a section of 
π , if it satisfies id=σ Bπ on its domain with idB as the identity map on B . The set of 
all sections of π will be denoted by ( )Γ π .  
 
 It is worth mentioning that we do not require that a section is globally defined. 
Furthermore, there are manifolds that do not admit global smooth sections, which are 
zero nowhere. Let us look at the unit sphere 2 3⊂S , then one can imagine that it is 
impossible to assign a non zero tangent vector to any point of 2S in a smooth way.  
 
This fact is expressed by the Hairy Ball theorem that states, simply spoken, you cannot 
comb a hairy ball in a smooth way, or more precisely that any smooth tangent vector 
field on 2S must vanish somewhere.  
 
Like we considered maps between manifolds, we can introduce maps for bundles that 
preserve the bundle structure.  
 
Definition 7 Let ( , , ), ( , , )π πE B E B  be two bundles. A bundle map is a pair 

( , )f f f= B E of maps : , :f f→ →B EB B E E such that f f=E Bπ π is met on the 
domain of f. 
 
Let ( , )x u and ( , )x u be adapted coordinates of the bundles ( , , ), ( , , )E B E Bπ π , then a 
bundle map f has the local representation  
 

( ), ( , ) ( , )x f x x u f x u= =B E , 
 
where ,f fB E denote the representation of ( , )f fB E in the adapted coordinates. From this 
representation it is easy to see that a bundle map ( , )f f f= B E allows us to transfer a 
section ( )Γσ∈ π to a section ( )Γσ ∈ π by 
 

1( )f f f −∗ = =σ σ σE B , (7) 
 
iff fB is a diffeomorphism. We call ( )f σ∗  also the pushforward of σ by f .  
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