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Summary 
 
This paper is a review of the existing methods for designing an observer for a system 
modeled by nonlinear equations. We focus our attention on autonomous, finite 
dimensional systems described by ordinary differential equations. The current condition 
of such a system is described by its state variables about which we just have partial and 
possibly noisy measurements. The goal of the observer is to process these 
measurements and any information regarding the initial state of the system to obtain an 
estimate of the current state of the system. This estimate should improve with additional 
measurements and, ideally, converge to the true value in the absence of noise. The 
observer does this by taking advantage of our a priori knowledge of the dynamics of the 
system. 
 
1. Introduction 
 
Systems are sets of components, physical or otherwise, which are connected in such a 
manner as to form and act as entire units. A nonlinear system is described by a 
mathematical model consisting of inputs, states, and outputs whose dynamics is given 
by nonlinear equations. Such models are used to represent a wide variety of dynamic 
processes in the real world. The inputs are the way the external world affects the 
system, the states are the internal memory of the system and the outputs are the way the 
system affects the external world. An example of such a system is 
 
 ( ) ( ) ( )( ), ,x t f t x t u t=  (1) 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 ( ) ( ) ( )( ), ,y t h t x t u t=  (2) 
 
 ( ) 0ˆ0x x≈ . (3) 
 
The input is the m vector u, the state is the n vector x and the output is the p vector y. 
The state of the system at the initial time t = 0 is not known exactly but is approximately 

0x̂ . Typically, the dimensions of the input and output are less than that of the state. 
 
A particular case is an autonomous linear system  
 
 x Ax Bu= +  (4) 
 
 y Cx Du= +  (5) 
 
 ( ) 0ˆ0x x≈ . (6) 
 
Other examples include systems described by difference equations  
 
 ( ) ( ) ( )( )1 , ,x t f t x t u t+ =  (7) 
 
 ( ) ( ) ( )( ), ,y t h t x t u t=  (8) 
 
and infinite dimensional systems described by partial differential and/or difference 
equations, delay differential equations or integro-differential equations. This review will 
focus on finite dimensional systems described by ordinary differential equations. 
 
An observer is a method of estimating the state of the system from partial and possibly 
noisy measurements of the inputs and outputs and inexact knowledge of the initial 
condition. More precisely an observer is a causal mapping from any prior information 
about the initial state x0 and from the past inputs and outputs  
 
 ( ) ( )( ){ }0, :u y t tτ τ ≤ τ ≤  (9) 

 
to an estimate ( )x̂ t  of the current state x(t) or an estimate ( )ẑ t  of some function z(t) = 
κ(x(t)) of the current state. Causality means that the estimate at time t does not depend 
on any information about the inputs and outputs after time t. This restriction reflects the 
need to use the estimate in real time to control the system. The essential requirement of 
an observer is that the estimate converges to the true value as t gets large. 
 
Sometimes it is not necessary to estimate the full state but only some function of it, say 
κ(t, x). For example, if one wishes to use the feedback control u = κ(t, x). This article 
will focus on observers of the full state. 
 
The prototype of an observer is that of an autonomous linear system Eqs. (4) - (6). The 
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system 
 
 ( )ˆ ˆ ˆx Ax Bu L y y= + + −  (10) 
 
 ˆ ˆy Cx Du= +  (11) 
 
 ( ) 0ˆ ˆ0x x=  (12) 
 
is an observer where L is an n × p matrix to be chosen by the designer. The dynamics of 
the error ˆx x x= −  is given by 
 
 ( )x A LC x= −  (13) 
 
 ( ) 0 0ˆ0x x x= −  (14) 
 
If the spectrum of the matrix A − LC lies in the open left half plane, then the error 
decays to zero exponentially fast. In this way, the problem of designing an observer for 
an autonomous linear system is reduced to the following problem. Given A, C, find L so 
that A − LC is Hurwitz, i. e., the spectrum of A − LC is in the open left half plane. We 
discuss when L can be so chosen in the next section (see Design Techniques for Time 
Varying Systems for further details.) 
 
For nonlinear systems the distinction between nonautonomous Eqs. (1) - (3) and 
autonomous systems 
 
 ( ),x f x u=  (15) 
 
 ( ),y h x u=  (16) 
 
 ( ) 0ˆ0x x=  (17) 
 
is frequently not important as one can add time as an extra state xn+1 = t − t0 and thereby 
reduce the former to the latter. Since an observer operates in real time, time is usually 
observable and so can be added as an extra output also. Frequently models depend on 
parameters θ as in ( ), ,x f x u= θ . But in a nonlinear system the distinction between 
states and parameters is not always clearcut. Parameters can always be treated as 
additional states by adding the differential equation 0θ = . Therefore, the problem of 
real time parameter estimation reduces to the problem of real time state estimation and 
may be solvable by an observer. If the state estimate is not going to be used in real time, 
then one can collect data after time t to estimate x(t). This problem is sometimes called 
nonlinear smoothing and is related to the identification of nonlinear systems (see 
Identification of Nonlinear Systems) . 
 
Another example of an observer is the extended Kalman filter described in more detail 
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in (see State Reconstruction by Extended Kalman Filter) and in the following 
statements. This is an observer for a nonlinear, nonautonomous system Eqs. (1) - (3) 
which is derived using stochastic arguments. Two quantities ( )x̂ t  and P(t) are 
computed by the extended Kalman filter. The stochastic interpretation is that the 
distribution of the true state x(t) is approximately Gaussian with mean ( )x̂ t  and 
covariance P(t). 
 
Most observers are described recursively as a dynamical system whose input is the 

measured variables 
u
y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and whose output is the state estimate x̂  such as 

 
 ( )ˆ , , ,z f t z u y=  (18) 
 
 ( )ˆˆ , , ,x h t z u y=  (19) 
 
If the state of the observer, z, is of the same dimension as the state of the system, then it 
is called a full order observer; if it is of greater dimension then it is called an expanded 
order observer, and if it is of lesser dimension, then it is called a reduced order observer. 
For example, the prototype autonomous linear observer Eqs. (10) - (12) can be written 
as 
 

 ( ) [ ] u
z A LC z B LD L

y
⎡ ⎤

= − + − ⎢ ⎥
⎣ ⎦

 (20) 

 
 x̂ z=  (21) 
 
 ( ) 0ˆ0z x=  (22) 
 
and hence is a full order observer. The state of extended Kalman filter discussed as 
follows is the pair ( )ˆ,z x P= , so it is an expanded order observer. We briefly discuss the 
Luenberger observer, a reduced order observer for a linear autonomous system in the 
form 
 

 1 11 12 1 1

2 21 22 2 2

x A A x B
u

x A A x B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (23) 

 
 1y x Du= +  (24) 
 
 ( ) 00x x=  (25) 
 
The reduced order observer is given by 
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 ( ) ( ) ( ) ( )22 12 21 11 22 12z A LA z A LA A LA L y Du= − + − + − −⎡ ⎤⎣ ⎦  (26) 
 
 1̂x y Du= −  (27) 
 
 ( )2x̂ z L y Du= + −  (28) 
 
where L is a design parameter. If the model is exact then 1 1x̂ x=  and 
 
 ( )2 22 12 2x A LA x= −  (29) 
 
so if the spectrum of the matrix 22 12A LA−  lies in the open left half plane then the error 
decays to zero exponentially fast. We discuss when L can be so chosen in the next 
section. For more on reduced order linear observers, (see Observer Design) . 
 
The state z of the observer is some measure of the likely distribution of the state of the 
original system given the past observations. If the observer is derived using stochastic 
arguments, the state of the observer is typically the conditional density of the state of the 
system given the past observations and the initial information. In the extended Kalman 
filter, the state ( )ˆ,z x P=  is the mean and the covariance of the approximately Gaussian 
distribution of the true state. For the full and reduced order linear observers described 
previously, which were derived by nonstochastic arguments, one can view the 
conditional density as being singular and concentrated at a single point, ( )x̂ t . 
 
2. Observability 
 
The question of whether an observer converges is of paramount importance. A more 
immediate question is when a nonlinear system Eqs. (15) - (17) admits a convergent 
observer. This leads to the concepts of observability and detectability which are 
discussed in (see Controllability and Observability of Nonlinear Systems) . Briefly two 
states x01, x02 are said to be distinguishable by an input u(t) if the outputs y1(t), y2(t) of 
Eqs. (15) - (17) satisfying the initial conditions x0 = x01, x0 =  x02 differ at some time t ≥ 0. 
The system is said to be observable if every pair x01, x02 can be distinguished by some 
input u(t). An input u(t) which distinguishes every pair x01, x02 is said to be universal. A 
system where every input is universal is said to be uniformly observable. 
 
Consider a smooth autonomous nonlinear system without inputs 
 
 ( )x f x=  (30) 
 
 ( )y h x=  (31) 
 
 ( ) 00x x=  (32) 
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At time t = 0 the output and its time derivatives are given by the iterated Lie derivatives 
 
 ( ) ( )00y h x=  (33) 

 

 ( ) ( )( ) ( ) ( )0 0 00 f
hy L h x x f x
x
∂

= =
∂

 (34) 

 

 ( ) ( )( ) ( ) ( ) ( )2 0 0 00 f
f

L h
y L h x x f x

x
∂

= =
∂

 (35) 

 
and so on. If the p-vector-valued functions h, Lf (h), ( )2

fL h , . . . distinguish points then 
clearly the system is observable. For a real analytic system, this is a necessary and 
sufficient condition for observability. This suggests a way of reconstructing the state of 
a system, differentiate the output numerous times, and find the state which generates 
such values. One does not proceed in this fashion because differentiation greatly 
accentuates the effect of the almost inevitable noise that is present in the observations, 
and multiple differentiations greatly increase this problem. That is why observers are 
usually dynamic systems driven by  measurements. When such systems are integrated, 
the effect of the noise is mitigated not enhanced. 
 
For simplicity of exposition, suppose that n = kp. If the matrix 
 

 

( ) ( )
( ) ( )

( ) ( )

0

0

1
0

f

k
f

h
x

x
L h

x
x

L h
x

x

−

⎡ ∂ ⎤
⎢ ⎥∂⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎢ ⎥
⎢ ⎥
⎢ ⎥
∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

 (36) 

 
is invertible then the p-vector-valued functions  
 
 ( )h x1ξ = , (37) 
 
 ( )( )2 fL h xξ = ,..., (38) 
 
 ( )( )1k

k fL h x−ξ =  (39) 
 
are local coordinates around x0 and in these coordinates the system Eqs. (30) - (32) 
becomes 
 
 y 1= ξ  (40) 
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 1 2ξ = ξ  (41) 
 

 2 3ξ = ξ
 (42) 

 
 ( )k kfξ = ξ  (43) 
 
Each ξi is a p-vector. Such a system is said to be in observable form, since it is clearly 
observable. Many algorithms for constructing observers start with the assumption that 
the system is in observable form. The observable form of a n = kp system with inputs is 
 
 ( )0y g u1= ξ + ξ,  (44) 
 
 ( )1 2 1g uξ = ξ + ξ,  (45) 
 

 ( )2 3 2g uξ = ξ + ξ,
 (46) 

 
 ( ) ( )k k kf g uξ = ξ + ξ, . (47) 
 
where gi(ξ, 0) = 0. Such a system is clearly observable as the input u(t) = 0 distinguishes 
every pair of points, but it may not be uniformly observable. A system 
 
 ( )0y g u1= ξ +  (48) 
 

 ( )1 2 1 1g uξ = ξ + ξ ,
 (49) 

 

 ( )1 2 1 ,i i ig u+ξ = ξ + ξ ,...,ξ
 (50) 

 
 ( ) ( )1 ,k k k kf g uξ = ξ + ξ ,...,ξ . (51) 
 
is said to be in uniformly observable form for it is clearly uniformly observable. From 
the knowledge of u(t), y(t) we can determine ξ1(t), from the knowledge of u(t), y(t), 

( )1 tξ  we can determine ξ2(t), etc. 
 
An autonomous linear system is observable if, and only if, the matrix 
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1n

C
CA

O

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (52) 

 
is of full column rank in which case C, A is said to be an observable pair. Moreover, for 
such systems the spectrum of A − LC can be set up arbitrarily to complex conjugation 
by choice of L. (As a real matrix the spectrum of A − LC is invariant with respect to 
complex conjugation.) (See Observer Design). 
 
A system Eqs. (15) - (17) is detectable, if whenever the outputs are equal y1(t) = y2(t) 
from the initial states x01, x02 using the same control u(t), then the state trajectories 
converge x1(t) − x2(t) → 0. 
 
For an autonomous linear system, the kernel of the matrix Eq. (52) is the largest 
invariant subspace of the matrix A contained in the kernel of C. It is not hard to show 
that the system is detectable if, and only if, the spectrum of A restricted to the kernel of 
Eq. (52) is in the open left half plane. Clearly, the spectrum of A − LC on the kernel of 
Eq. (52) does not depend on L. The rest of the spectrum of A − LC can be set up 
arbitrarily to complex conjugation by choice of L. 
 
Hence a linear system admits a convergent observer if, and only if, it is detectable. It is 
not hard to show that the system Eq. (23) - (25) is detectable if, and only if, the reduced 
system is. 
 
 2 22 2x A x=  (53) 
 
 12 2y A x=  (54) 
 
Hence a linear system admits a convergent reduced order observer if and only if it is 
detectable. 
 
- 
- 
- 
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