
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Well-Posedness  of  Hybrid Systems - M.K. Çamlibel, 
W.P.M.H. Heemels, A.J. van der Schaft and J.M. Schumacher 

©Encyclopedia of Life Support Systems (EOLSS) 

WELL-POSEDNESS OF HYBRID SYSTEMS 
 
M.K. Çamlibel 
Dept. of Electronics and communication Eng., Doğus University, Istanbul, Turkey 
 
W.P.M.H. Heemels 
Dept. of Electrical Eng., Eindhoven Uni. of Technology, Eindhoven,The Netherlands  
 
A.J. van der Schaft 
Fac. of Mathematical Sciences, University of Twente, Enschede, The Netherlands  
 
J.M. Schumacher 
Dept. of Econometrics and Oper. Res., Tilburg University, Tilburg, The Netherlands  
 
Keywords: Hybrid Systems, well-posedness, hybrid automata, supervisory control, 
differential inclusions, complementarity problems, complementarity systems, even/flow 
formulas, multi-modal systems, passive systems, piecewise linear systems, differential 
equations with discontinuous right-hand sides, Zeno behaviour, nonsmooth dynamical 
systems. 
 
Contents 
 
1. Introduction 
2. Model Classes 
2.1. The Hybrid Automaton Model 
2.2. Explicit State-space Model 
2.3. Supervisor Model 
2.4. Differential Inclusions 
2.5. Complementarity Systems 
2.6. Event/Flow Formulas 
3. Solution Concepts 
4. Well-posedness Notions 
5. Well-posedness of Hybrid Automata 
6. Well-posedness of Multi-modal linear Systems 
7. Complementarity systems 
7.1. Linear Complementarity Systems 
7.1.1. Linear Complementarity Systems with Index 1 
7.1.2. Linear Passive Complementarity Systems 
7.2. Piecewise Linear Systems 
7.3. Variations and Generalizations 
8. Differential Equations with Discontinuous Right-hand Sides 
Acknowledgement 
Glossary 
Bibliography 
Biographical Sketches 
 
Summary 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Well-Posedness  of  Hybrid Systems - M.K. Çamlibel, 
W.P.M.H. Heemels, A.J. van der Schaft and J.M. Schumacher 

©Encyclopedia of Life Support Systems (EOLSS) 

Well-posedness problems arise in hybrid systems theory as a consequence of the use of 
implicit descriptions and of solution concepts that are based on relaxations. Examples 
show that the well-posedness issue is considerably more complex in hybrid systems 
than in continuous systems, as a result of a number of factors including the possible 
presence of sliding modes, the interaction of guards and invariants, and the occurrence 
of left or right accumulations of event times. Description formats that are based on 
implicit or relaxed specifications are typically connected to particular subclasses of 
hybrid systems, and so there is no general theory of well-posedness of hybrid systems; 
however, the questions that need to be answered are similar in each case. This chapter 
surveys several description formats and solution concepts that are used for hybrid 
systems. We concentrate on well-posedness in the sense of existence and uniqueness of 
solution, without requiring continuous dependence on initial conditions. A selection of 
results available in the literature is presented for the subclasses of multi-modal linear 
systems, complementarity systems, and differential equations with discontinuous right-
hand sides. 
 
1. Introduction 
 
Very broadly speaking, scientific modeling may be defined as the process of finding 
common descriptions for groups of observed phenomena. Often, several description 
forms are possible. To take an example from not very recent technology, suppose we 
want to describe the flight of iron balls fired from a cannon. One description can be 
obtained by nothing that such balls approximately follow parabolas, which may be 
parameterized in terms of firing angle, cannon ball weight, and amount of gun powder 
used. Another possible description characterizes the trajectories of the canon balls as 
solutions of certain differential equations. The latter description may be viewed as being 
fairly indirect; after all it represents trajectories only as solutions to some problem 
rather than expressing directly what the trajectories are, as the first description form 
does. On the other hand, the description by means of differential equations is applicable 
to a wider range of phenomena, and one may therefore feel that it represents a deeper 
insight. Besides, interconnection (composition) becomes much easier since it is in 
general much easier to write down equations than to determine the solutions of the 
interconnected system. 
 
There are many examples in science where, as above, an implicit description (that is, a 
description in terms of a mathematical problem that needs to be solved) is useful and 
possibly more powerful than explicit descriptions. Whenever an implicit description is 
used, however, one has to show that the description is a “good” one in the sense that the 
stated problem has a well-defined solution. This is essentially the issue of well-
posedness. 
 
In this chapter we are concerned with hybrid dynamical systems, that is, systems in 
which continuous dynamics and discrete transitions both occur and influence each other. 
Many different description formats have been proposed in recent years for such 
systems; some proposed forms are quite direct, others lead to rather indirect descriptions. 
The direct forms have advantages from the point of view of analysis, but the indirect 
forms are often preferable from the perspective of modeling (specification); examples 
will be seen below. The more indirect a description form is, the harder it becomes to 
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show that solutions are well-defined. Below we discuss a number of results on existence 
and uniqueness of solutions for given initial conditions in the context of various 
description formats for hybrid systems. It should be noted that this is still a very active 
research area, and so what we present can be no more than an impression of the state of 
the art at the moment of this writing (summer 2001). 
 
We consider here systems in which the description of continuous dynamics in based on 
ordinary differential equations; in particular, we do not consider delayed arguments, 
partial differential equations, or stochastic differential equations. All of these settings 
require their own notions of well-posedness. Even in the context of ordinary differential 
equations, there are situations in which one is naturally led to the consideration of well-
posedness problems for systems with mixed boundary conditions (i.e. partly initial 
conditions, partly final conditions). Here however we shall concentrate on initial value 
problems. Furthermore we only consider models that are formulated in continuous time. 
Discrete-time models are often stated in explicit form so that well-posedness is not 
much of an issue; that is not to say, of course, that implicit discrete-time models would 
not be sometimes useful. 
 
2. Model Classes 
 
We begin by introducing a number of description formats of hybrid systems. As already 
noted above, many different formats have been proposed, and so we can present only a 
selection. 
 
2.1. The Hybrid Automaton Model 
 
Hybrid systems research is sometimes viewed as a merger between dynamical 
systems/control theory on one side and computer science/automata theory on the other. 
It is therefore natural to look for description forms that combine elements from both 
sides. One way is to start with models that are used in computer science and to extend 
these with elements from continuous systems theory. 
 
In computer science, direct description forms appear to dominate. A typical 
specification of a finite automaton consists of a list of all states together with the 
transitions that may occur from each of these states and the conditions under which 
these transitions may take place. In more structured descriptions, such as Petri nets, the 
collection of states is not listed explicitly, but there is still for each state a simple rule 
that defines the possible successor states. Determinism (in the sense that a uniquely 
determined trajectory exists for a given initial condition and, if applicable, a given input 
sequence) is not always required; for instance if the model is to be used to prove a 
certain property and it is suspected that the proof will not depend on certain details of 
the dynamics, it is very convenient to leave these details unspecified. The discrete 
systems studied by computer scientists are often very large and so a key issue is 
compositionality, that is, the feasibility of putting subsystems together to form a larger 
system. 
 
The hybrid automaton model as proposed by Alur et al. may be described briefly as 
follows. The discrete part of the dynamics is modeled by means of a graph whose 
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vertices are called locations and whose edges are transitions. The continuous state takes 
values in a vector space X . To each location there is a set of trajectories, which are 
called activities, and which represent the continuous dynamics of the system. Interaction 
between the discrete dynamics and the continuous dynamics takes place through 
invariants and transition relations. Each location has an invariant associated to it, which 
describes the conditions that the continuous state has to satisfy at this location. Each 
transition has an associated transition relation, which describes the conditions on the 
continuous state under which that particular transition may take place and the effect that 
the transition will have on the continuous state. Invariants and transition relations play 
supplementary roles: whereas invariants described when a transition must take place 
(namely when otherwise the motion of the continuous state as described in the set of 
activities would lead to violation of the conditions given by the invariant), the transition 
relations serve as “enabling conditions” that describe when a particular transition may 
take place. 
 
In the model, transitions are further equipped with synchronization labels, which 
express synchronization constraints between different automata. This construct allows 
the introduction of a notion of parallel composition between two automata. The 
component automata are assumed to have the same continuous state space, and the set 
of activities at each location of the composition (which is a pair of locations of the 
component automata) is the intersection of the sets of activities at the corresponding 
component locations. 
 
Various ramifications of the hybrid automaton model have been proposed in the 
literature. Sometimes the notion of a transition relation is split up into two components, 
namely a guard which specifies the subset of the state space where a certain transition is 
enabled, and a jump function which is a (set-valued) function that specifies which new 
continuous states may occur given a particular transition and a particular previous 
continuous state. Often the hybrid automaton model is extended with a description 
format for continuous dynamics, typically systems of differential equations. Versions of 
the hybrid automaton model which include external inputs have been proposed in the 
literature. 
 
2.2. Explicit State-space Model 
 
Many studies in continuous-variable control theory are based on the model 

( ) ( ( ), ( ))x t f x t u t= where ( )x t denotes a continuous state variable and ( )u t is a 
continuous control variable. Often one just writes ( , )x f x u= , suppressing the 
dependence of all variables on time. A model in the same spirit for hybrid systems may 
be written down as follows: 
 

( , , , )x f x q u r=  (1) 
 

( , , , )q g x q u r+ = , (2) 
 
where x and u are continuous state and control variables as before, q and r denote 
discrete state and control variables, and superscript “+” is used to indicate “next state”. 
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The function g express updates of the discrete state which depend on the current values 
of both the continuous and the discrete state, as well as on the continuous and discrete 
inputs. 
 
We call the above model “explicit” even though the continuous dynamics is actually 
given in terms of a problem, to wit a differential equation, since the model gives the 
time derivative of the continuous state variable explicitly as a function of all variables in 
the system. The discrete-state update is given explicitly as well. For such models, the 
well-posedness issue is rather easy (if not trivial) because of the explicit nature. 
 
 
2.3. Supervisor Model 
 
One of the sources of interest in hybrid systems is supervisory control, that is, control of 
a continuous system by means of a discrete system. (Other names for such control 
schemes are in use as well, for instance intelligent control.) In the context of 
supervisory control, it is natural to use a framework in which there is a continuous 
system on the one hand, a discrete system on the other, and the two are connected in a 
feedback loop which involves a translation from digital to analog signals and back. The 
continuous dynamics can be considered to be parameterized by the discrete state of the 
supervisor. The continuous state is discretely monitored, typically through a partition of 
the state space, and the resulting signal is processed by the supervisor. 
 
2.4. Differential Inclusions 
 
During the past decades, extensive studies have been made of differential equations 
with discontinuous right hand sides. For a typical example, consider the following 
specification: 
 

1( ) ( ( ) 0)x f x h x= >  (3a) 
 

2 ( ) ( ( ) 0)x f x h x= < , (3b) 
 
where h is a real-valued function. A system of this form can be looked at either as a 
discontinuous dynamical system or as a hybrid system of a particular form. The 
specification above is obviously incomplete since no statement is made about the 
situation in which ( ) 0h x = . One way to arrive at a solution concept is to adopt a suitable 
relaxation. Specifically, in a convex relaxation one would rewrite Eq.(3) as   
 

( )x F x∈ , (4) 
 
where the set-valued function ( )F x is defined by  
 

1 2( ) { ( )} ( ( ) 0), ( ) { ( )} ( ( ) 0)F x f x h x F x f x h x= > = < , 
 

1 2( ) { | [0,1]s.t. ( ) (1 ) ( )} ( ( ) 0)F x y a y af x a f x h x= ∃ = + − =∈ , (5) 
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where it is assumed (for simplicity) that 1f and 2f are given as continuous function 
defined on { | ( ) 0}x h x ≥ and { | ( ) 0}x h x ≤ respectively. The discontinuous dynamical 
system has not been reformulated as a differential inclusion, and so solution concepts 
and well-posedness results can be applied that have been developed for systems of this 
type. 
 
2.5. Complementarity Systems 
 
Systems of the form (3) are sometimes known as variable-structure systems; they 
describe a type of mode-switching. A similar mode-switching behaviour is obtained 
from a class of systems known as complementarity systems. Equations for a 
Complementarity system may be written in terms of a state variable x and auxiliary 
variables v and z , which must be vectors of the same length. Typical equations are: 
 

( , )x f x v=  (6a) 
 

( , )z h x v=  (6b) 
 
0 0z v≤ ⊥ ≥ , (6c) 
 
where the last line means that the components of the auxiliary variables v and z  should 
be nonnegative, and that for each index i and for each time t at least one of the two 
variables ( )iv t and ( )iz t should be equal to 0. Variables that satisfy such relations occur 
naturally in various problems; think of current/ voltage in connection with ideal diodes, 
flow/pressure in connection with one-sided valves, Lagrange multiplier / slack variable 
in optimization subject to inequality constraints, and so on. Like (3), the system (6) 
consists of a number of different dynamical systems or “modes” that are glued together. 
The modes can be thought of as discrete states. They correspond to a fixed choice, for 
each of the indices i , between the two possibilities 0, 0i iv z≥ =  and 0, 0i iv z= ≥ , so 
that a Complementarity system in which the vectors v and z have length m has 
2m different modes. The specification (6) is in general not complete yet; one has to add 
a rule that describes possible jumps of state variable x when a transition from one mode 
to another takes place. 
 
The description (6) is implicit in the discrete variables. Suppose we are at a point where 
a transition must occur because otherwise an inequality constraint would be violated. 
There may or may not be a unique mode in which the differential equations of (6a), 
together with the equality constraints in (6c) that are implied by the given mode, 
produce a solution that satisfies the complementary inequality constraints in (6c) at least 
for some positive time interval. If there is indeed a unique solution to this problem, then 
this mode is taken as the successor state. In case this procedure can be successfully 
carried out at all points of the continuous state space, the Complementarity system can 
in principle be rewritten in the explicit hybrid automaton format., but the representation 
that is obtained may be very awkward. 
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2.6. Event/Flow Formulas 
 
The notion of time as used in hybrid systems theory is different both from the time used 
in continuous system theory and from the time used in automata theory. In the theory of 
continues dynamical systems, typically the real line or intervals of it are taken as the 
time axis, whereas in automata theory time just serves to impose an order on separate 
events, so that an appropriate model of time is often provided by (a subset of) the 
integers. In hybrid systems theory, time could be described as a “punctured real axis”. 
One may even consider events of higher multiplicity, so that the time points at which 
events take place may have different integer weights. In systems that are obtained by 
composition of smaller subsystems, here may be events in some subsystems that are not 
shared by other subsystems and so one may argue that actually the time axes for 
different subsystems should be different. A description format for hybrid systems that 
incorporates a notion of “multitime” has been proposed by Van der Schaft and 
Schumacher. The format allows specification of equations of a fairly general type in 
which “flow conditions” (such as differential equations) and “event conditions” (such as 
transition rules) can be specified. In general the format is implicit both in the continuous 
variables and in the discrete variables. 
 
- 
- 
- 
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