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Summary 
 
This chapter gives an overview about industrial applications of modern fault detection 
and diagnosis approaches. It will not cover all possible applications which is impossible 
because of the numerous applications in different areas. Instead, some examples will 
highlight the possible use of modern supervision systems. Future aspects will briefly be 
touched to give the reader a feeling of what trends will become important in the years to 
come. 
 
The structure is as follows: In the introduction, some typical application areas and the 
methodologies used in these areas will be briefly mentioned. After that, the contribution 
will go into more details by showing exemplary applications in the fields of industrial 
processes and mechatronic devices in automotive applications. For a better 
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understanding of the examples, an introduction into the most important methods will be 
given first. Finally, a summary with future aspects will be given. 
 
1. Introduction and Overview 
 
Process supervision systems serve to indicate faulty states of a process and initiate 
appropriate counteractions. One can distinguish the following three functions: 
 

• Monitoring: Measurable quantities are checked and threshold violations are 
displayed. Alarms are generated to trigger actions from the operator. 

 
• Automatic protection: In addition to monitoring, appropriate actions are 

undertaken to avoid damage or possibly hazardous situations. 
 

• Supervision with fault diagnosis: Using advanced mathematical methods, not 
only simple quantities are checked, but features are calculated, that serve as a 
basis for a diagnosis identifying different fault causes. 

 
In most of today's supervision systems only monitoring is performed. This very simple 
and reliable way of process supervision has nevertheless some drawbacks: It can only 
be employed when the signals are in steady-state condition. Any dynamic operation 
would lead to false alarms. During set point changes, those systems are usually 
deactivated. Closed-loop control further hinders fault detection since fault effects are 
covered by control actions.  
 
Modern supervision concepts allow not only monitoring and automatic protection but 
can also help to perform maintenance on demand or an earlier detection of gradually 
developing faults. They can be employed in closed-loop situations and work even under 
dynamic operation. That allows a supervision at more levels of technical processes. 
 
1.1 Main Application Areas 
 
If one considers the different application areas, one finds distinctively different 
requirements for supervision systems that lead to the use of the different methods to 
detect and diagnose faults.  
 
Chemical industry and process industry applications are characterized by a large 
number of measurement values. The systems usually have relatively large time 
constants and are relatively robust, not meaning that serious faults can not lead to 
devastating problems. One finds many relatively simple systems that are sufficiently 
supervised by limit and plausibility checking. This includes system parts like flow 
controls, discrete event systems such as transportation devices, valves, etc. Many of 
these individual components are already equipped with simple diagnosis capabilities. 
Hydraulic pistons for instance that are used to transport and move parts of a production 
environment can be equipped with end-position switches to monitor the correct 
movement. Modern sensors are also equipped with diagnostic circuits that can discover 
failures and malfunctions. Most of these diagnostic capabilities, however, are limited: 
Usually they only make a binary decision, meaning they can only discover a total 
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breakdown of the devices. Overall, one can state that monitoring is the main task in 
these applications.  
 
Since there are usually numerous individual devices connected via industrial field bus, 
the central process control receives many diagnostic signals. The main task of such a 
process control is to manage this number, select the important, perform automatic 
protection and display them in appropriate form to the process operator. Consequently, 
modern methods include approaches like data mining or discrete event logic’s; they are 
usually highly specific to the individual plant.  
 
Still less frequently, supervision with fault diagnosis concepts is realized. They can 
connect the information from different sensors and actuators to monitor their correct 
behavior. They are, on the other hand, capable of detecting possibly hazardous 
situations early on and start appropriate counteractions. They also need an application to 
the individual process. Typically, only some main or highly critical parts of industrial or 
chemical factories are equipped with these supervision systems utilizing modern signal-
processing techniques.  
 
Mechatronic devices and automobiles are the other important application area of 
supervision and diagnosis approaches. Examples in automotive applications are the on-
board diagnosis capabilities of modern vehicles. They allow us to inform the driver 
about problems requiring repair or advice him to use the vehicle only in a limited way. 
These diagnostics are usually driven either by laws for instance in the avoidance of 
excessive pollution due to malfunctions or by the effort to avoid unwanted stops. In the 
context of more and more replacements of mechanical by electro-mechanical or 
electrical components, the self-diagnostics becomes essential for the assurance of 
safety-critical operation.  
 
Many individual components in vehicles can be described as mechatronic devices where 
a close connection of the mechanics with actuators and local computational resources is 
given. These devices are also frequent in modern production processes and they enter 
more and more areas of today's life. They have the capability to supervise their 
functionality to a higher degree than traditional devices with separate mechanical and 
electrical parts have. Hence, there is a strong tendency to design mechatronic devices 
with built-in supervision with fault detection. 
 
2. Methods 
 
To illustrate the use of modern fault detection and diagnosis capabilities, examples will 
be given in the following sections. They will be a thermal plant as common in many 
chemical plants and other examples will be from the automotive area where 
mechatronic devices are used.  
 
For an easier understanding of the examples, some of the most important modern 
methods will be described first. They deal with the two problems of fault detection and 
fault diagnosis.  
 
2.1 Fault Detection Methods 
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Different approaches for fault detection using mathematical models have been 
developed since the 1980s. In this section, some of these are briefly described.  

 
Figure 1 displays the basic approach of model-based techniques: Using input and output 
measurements from the process, it can be judged whether or not the expected behavior 
is still present.  
 
Any change in the system will lead to a deviation of certain signals (usually called 
symptoms or features) being calculated by the fault detection scheme. A change 
detection taking the statistical properties of the residuals into account, will identify 
abnormal situations and trigger the fault diagnosis which identifies the specific fault 
situation. 

 
 

Figure 1: Model-Based Fault Detection and Diagnosis 
 
2.1.1. Parameter Estimation Methods and Signal Models 
 
Parameter estimation can be used to detect and isolate faults in a process if faults are 
reflected in parameters that can be gained from available measurements. The 
comparison of reference parameters of input-output models with the actual parameters 
determined by the measurements can indicate the appearance - and sometimes also the 
size - of the fault. If the process is sufficiently linear, its output ( )y t  depending on the 
input ( )u t  can be described by 
 
( ) ( )Ty t t= ψ θ  (1) 
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Minimizing the equation error ( )e t  of such a model in a least-square sense, see Figure 
2a, leads to an estimate for the parameters given by 
 

1T Tˆ −
⎡ ⎤= ⎣ ⎦θ Ψ Ψ Ψ y  (4) 

 
where the matrix Ψ  and vector y  contain the measurements and their derivatives at the 
sample times. Similar estimation schemes can be used for discrete-time models and 
multi-input multi- output processes. The relationship between the physical parameters 
(like a stiffness, damping coefficient or resistance) of the process and the model 
parameters ,  i ia b must then be inverted to draw conclusions about the fault cause. 
 
An alternative estimation approach is shown in Figure 2.b, where the parameters of the 
model are adopted to yield a minimal output error '( )e t . In this case, the necessary 
nonlinear optimization scheme of the estimation requires more computational effort. 
 

 
 

Figure 2: Model-based parameter estimation schemes for fault detection 
 
The estimation will produce useful parameter deviations only if the signals are 
sufficiently excited. This situation is given during set-point changes or dynamic 
operation. One can also artificially excite the process or even run a special test-cycle on 
it (typical for end-of-line-testing). Generally speaking, the information gained from 
parameter estimation is very high, since even from a single-input/single-output process 
a number of different parameter deviations can be retrieved. A disadvantage is the 
necessary excitation of the process. 
 
Parameter estimation can also be used in combination with signal models where no 
input is measured. This applies especially to periodic components where an estimation 
of characteristic values (like resonance frequencies) reveals insight into the process 
state. 
 
2.1.2. Observers and State Estimation 
 
The state space formulation for dynamic systems 
 
( ) ( ) ( )t t t= +x Ax Bu�  (5) 
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( ) ( )t t=y Cx  (6) 
 
should be used when considering multi-input/multi-output systems. In state space form, 
a detailed modeling of fault can be done by distinguishing 
 

• Additive faults that appear as an additional term either in 5 (additive to the 
states) or in 6 (added to the outputs ( )ty ). 

• Multiplicative faults are a variation of the system matrices , ,A  B  C  (usually 
modeled as additive terms like faulty = + ΔA A A ). These are faults on the 
parameters of the system. Their effect on the symptoms is formed by a 
multiplication of the parameter change with the corresponding signal amplitude. 

 
By the use of state or output observers, different fault schemes can be constructed. The 
applicability of each of those methods depends heavily on the specific problem, 
especially on the degree of analytical redundancy provided by the process 
measurements. All schemes can be used to observe output signals or states of the 
system. The following methods are known: 
 

• Observers, excited by one output. That way, the other outputs can be 
reconstructed and compared with the corresponding measurements. Especially 
suited for sensor faults. With a bank of observers (dedicated observer scheme), 
each driven by a different output, even the detection of multiple sensor faults 
becomes possible. 

• Observers, excited by all but one output. This procedure is usually simpler to be 
implemented because the requirements for the observability of the process are 
less stringent. With a bank of observers (generalized observer scheme), a 
distinction of different faults can again be reached. 

• Observers, excited by all outputs. This is suitable if the faults inflict changes on 
the internal states of the process. 

• Kalman filters are used to find changes in the innovation indicating changes of 
the process. 

• Fault detection filters can be observers that are designed to yield multi-
dimensional residuals that point in a certain direction dependent on the specific 
fault. 

 
Important improvements have been achieved in the extension to nonlinear systems and 
increased robustness. 
 
2.1.3. Parity Equations 
 
Parity equations are a simple and straight-forward approach to build residuals that 
indicate faulty systems. Figure 3 shows two basic approaches, the output-error method 
and the equation-error method. More sophisticated schemes with the ability to isolate 
different faults can be gained from MIMO processes. 
 
Parity equations require a fixed parameterized model that serves as a reference for the 
measured behavior. They are closely related to observer methods but their design is 
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sometimes more intuitive. A design from state space equations or directly from the 
Laplace-transformed differential equations of the process is possible. 
 
2.2. Fault Diagnosis Methods 
 
With the residuals or features computed by one (or more) of the approaches presented 
above, a diagnostic system can be driven. This system may either use traditional causal 
reasoning (like fault-symptom trees) or perform a classification task. The latter is 
usually based on reference examples (labeled by an expert) and automatically derived 
from measured data. Recently, combinations of neural network techniques and fuzzy 
logic have gained more attention since they promise to integrate both approaches. 
 

 
 

Figure 3: Parity equations for fault detection  
(compare with the corresponding estimation schemes in Figure 2) 

 
2.2.1. Classification Methods 
 
Multilayer perceptron networks are frequently used to build diagnostic classification 
systems from reference data. Their advantage is the good software availability and high 
performance, provided complete data exists and no need for transparency of the 
diagnosis is present.  
 
Simpler classification methods (like distance-based methods) are also employed.  
 
2.2.2. Fuzzy and Neuro-Fuzzy Approaches 
 
In addition to the symptoms from Figure 1, heuristic symptoms from an operator can 
augment the analytical ones. Since these are commonly expressed in linguistic terms, a 
fuzzy logic based system seems appropriate to perform the diagnostic task.  
 
In addition, a-priori knowledge from experienced operators should be included, if 
present. That knowledge is preferably recovered as rules as well.  
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Figure 4: Example of a neuro-fuzzy scheme (SELECT, see) for fault diagnosis 
 

This leads to completely rule-based systems; however, a better performance can be 
expected if a combination of a technique driven by data and human knowledge is 
applied. Figure 4 displays a diagnosis system resulting from such a technique. The SElf-
Learning Classification Tree (SELECT) is a sequential set of fuzzy rules embedded in a 
neural network architecture.  
 
That allows an automatic tuning of the system for optimal performance (membership 
functions, importance of symptoms or other parameters of the system). It has the ability 
to learn the relationship between the symptom appearance and the corresponding fault 
from given data. The resulting diagnostic system is transparent and can be understood 
by the engineer. In addition, rules can be added manually, if such a-priori known rules 
exist.  

 
The rule set can be improved by a constrained optimization of some of system 
parameters (including the a-priori known rules). 

 
- 
- 
- 
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