
CONTENTS

TYPES AND PROPERTIES OF WATER

Types and Properties of Water - Volume 1

No. of Pages: 468

ISBN: 978-1-905839-22-3 (eBook) **ISBN**: 978-1-84826-922-4 (Print Volume)

Types and Properties of Water - Volume 2

No. of Pages: 392

ISBN: 978-1-905839-23-0 (eBook) **ISBN**: 978-1-84826-923-1 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact: eolssunesco@gmail.com

CONTENTS

VOLUME I

Types and Properties of Water	1	
Martin Gaykovich Khublaryan, Water Problems Institute, Russian Academy of Sciences, Russia		

- 1. Introduction
- 2. Water Types
 - 2.1. Atmospheric Water
 - 2.2. Oceans, inland seas, costal zones, and estuaries
 - 2.3. River, reservoirs, lakes, and wetland
 - 2.4. Groundwater
 - 2.5. Soil water
 - 2.6. Glaciers, icebergs, and ground ice
- 3. Physical Properties of Water, Including its Three Phases
 - 3.1. Water as a substance
 - 3.2. Peculiarities of Atmospheric Water
 - 3.3. Peculiarities of sea water
 - 3.4. Peculiarities of soil water and groundwater
 - 3.5. Particularities of glaciers and icebergs
- 4. Chemical Properties of Water
 - 4.1. Peculiarities of Atmospheric Water
 - 4.2. Peculiarities of Rivers, Streams, Lakes, and Wetlands
 - 4.3. Peculiarities of Sea Water
 - 4.4. Peculiarities of Soil and Groundwater
 - 4.5. Peculiarities of Glaciers and Icebergs
- 5. Biological Characteristics
 - 5.1. Biological Characteristics of Atmospheric Water
 - 5.2. Biological Characteristics of Oceans, Seas and Estuaries
 - 5.3. Biological Characteristics of Lakes, Streams, Rivers, and Wetlands
 - 5.4. Biological Characteristics of Soil and Groundwater
 - 5.5. Biological Characteristics of Glaciers and Icebergs

Characteristics of Water and Water Bodies in the Natural Environment

40

Yuri Sergeevich Dolotov, Water Problems Institute, Russian Academy of Sciences, Russia Igor Semenovich Zektser, Water Problems Institute, Russian Academy of Sciences, Russia

- 1. Atmospheric water
- 2. Surface water: oceans, interior seas, coastal zones and estuaries
- 3. Surface water: rivers, streams, lakes and wetlands

Atmospheric Water

52

Gennady Nikolaevich Panin, Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Water Sources
- 3. Atmospheric Circulation and Air Masses
 - 3.1. The Scales of Motion
 - 3.2. Air Masses
- 4. Anthropogenic Enhancement and Global and Local Climate Change
 - 4.1. Feedbacks in the Climate System
 - 4.2. Geographical Distribution of the Greenhouse Effect and Estimates of Regional Changes by 2030

 $@Encyclopedia\ of\ Life\ Support\ Systems\ (EOLSS)\\$

i

4.3. Caspian Sea Level Fluctuations as an Example of Local Climatic Change and Estimates of the Caspian Sea Changes by 2100

Surface Water: Oceans, Interior Seas, Coastal Zones and Estuaries

69

Yuri Sergeevich Dolotov, Water Problems Institute, Russian Academy of Sciences, Russia

- 1. Stratification
- 2. Water Masses and Mixing
- 3. Waves
- 4. Estuaries

Surface Waters: Rivers, Streams, Lakes and Wetlands

79

Martin Gaykovich Khublaryan, Water Problems Institute, Russian Academy of Sciences, Moscow, Russia

- 1. Rivers
- 2. Reservoirs
- Lakes
- 4. Wetlands

Typification of Groundwater Characteristics

95

Vyacheslav.M. Shestopalov, Radioecological Center, National Academy of Sciences of Ukraine, Ukraine

- 1. Types of water in rocks
- 2. Typification of gravitational groundwater by conditions of its occurrence
- 3. Typification of groundwater by conditions of its recharge and discharge
- 4. Typification of groundwater by intensity of subsurface water exchange
- 5. Typification of groundwater by origin
- 6. Groundwater typification by chemical composition and mineralization
- 7. Typification of groundwater by types of its use

Interconnection of Surface and GroundWater

119

Michail Michailovich Cherepansky, Central Research Institute of Complex Use of Water Resources Minsk, Belarus

V.A. Vsevolozhsky, Geological Department, *Moscow State University,named after M. Lomonosov, Moscow, Russia*

Igor Semenovich Zektser, Water Problems Institute, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Standard schemes of surface and groundwater interaction
 - 2.1. Schemes of groundwater recharge formation
 - 2.2. Scheme of groundwater discharge formation
 - 2.3. Groundwater flows under riverbeds
- 3. Surface and groundwater interaction in areas with different natural conditions.
 - 3.1. Plain territories
 - 3.2. Mountainous areas
 - 3.3. Permafrost zone
- 4. Groundwater interaction with seas and big lakes
- 5. Impact of anthropogenic activity on surface and groundwater interconnection

Glaciers, Icebergs and Ground Ice

139

Yurij Kirillovich Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

Alla Konstantinovna Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

- 1. Ice in Space
- 2. Glaciers
- 3. Ice Sheets
- 4. Ice Caps of Arctic and Antarctic Islands
- 5. Mountain glaciers
- 6. Hydrology of glaciers
- 7. Surges
- 8. Jokulhlaup
- 9. Icebergs
- 10. Iceberg interaction with sea ice
- 11. Ice Shelves
- 12. Stability of the Antarctic Ice Sheet
- 13. Ice Cores Studies
- 14. Lake, river and sea ice
- 15. Ground Ice
- 16. Ice wedges
- 17. Water source of ice-wedge ice
- 18. Massive ice bodies
- 19. Mountain permafrost
- 20. Global climate change and changes in glaciers and ground ice

Properties of Atmospheric Water

171

Gennady Nikolaevich Panin, Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Physical Properties including the Three States of Water
 - 2.1. Water Substance
 - 2.2. Atmospheric Aerosol
 - 2.3. The Tropospheric Aerosol
 - 2.4. The Stratospheric Aerosol
 - 2.5. Aerosol Particles Sources
 - 2.6. The Clouds
 - 2.6.1. The Classification of Clouds
 - 2.7. Air-Droplet Interaction and Precipitation
 - 2.8. Trends in Precipitation Chemistry
 - 2.9. Ice Formation
 - 2.10. Snow, Hail and Rain by the Ice Process
 - 2.11. Ice Precipitation
 - 2.12. Artificial Modification of Precipitation
- 3. Chemical Properties
 - 3.1. The Water Molecule
 - 3.2. Water aggregates
 - 3.2.1. (H2O)2 dimer and H2O-foreign gas binary complexes
 - 3.2.2. Water polymers
 - 3.2.3. Aqueous particles and water droplets
 - 3.2.4. Atmospheric water as a solute
 - 3.2.5. Ion water clusters
- 4. Biological and Microbiological Properties
- 5. Global Variations in the Chemistry of Atmospheric Water
 - 5.1. How atmospheric water chemistry is influenced by pollutants emission
 - 5.2. Atmospheric water as a reaction media
 - 5.3. Solubility of atmospheric pollutants
 - 5.4. Anthropogenic Enhancement, Global and Local Climate Change
 - 5.5. Feedbacks in the Climate System

- 5.6. Geographical Distribution of the Greenhouse Effect
- Estimates of regional Changes by 2030 (Intergovernmental Panel on Climate Change Report, 1990)
- 5.8. The Caspian Sea Level Fluctuations as an Example of Local Climatic Change
- 5.9. Analysis of changes in hydrometeorological parameters and their causes
- 5.10. Estimates of the Caspian Sea Changes by 2100

The Physical Properties of Atmospheric Water, Including its Three Phases

219

Gennady Nikolaevich Panin, Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Dry Air
- 3. Water Substance
- 4. Atmospheric Aerosol
- 5. The Clouds

Molecular Structure and Chemical Properties of Atmospheric Water

238

Andrei Alexeevich Vigasin, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. The Water Molecule
- 3. Water aggregates
 - 3.1. $(H_2O)_2$ dimer and H_2O -foreign gas binary complexes
 - 3.1.1. How many are there?
 - 3.2. Water polymers
- 4. Aqueous particles and water droplets
- 5. Atmospheric water as a solute
- 6. Ion water clusters

Biological and Microbiological Properties of Atmospheric Water

256

Nina Alexandrovna Zaitseva, Russian Academy of Sciences, Department of Earth Sciences, Russia

- 1. Link in the global hydrologic cycle
- 2. A habitat
- 3. Transport and other processes

Global Variations in the Chemistry of Atmospheric Water

265

Anatoly Pavlovich Purmal, Semenoff Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Background
 - 2.1. How atmospheric water chemistry is influenced by pollutants
 - 2.2. Atmospheric water as a reaction medium
 - 2.3. Solubility of atmospheric pollutants
- 3. Stratospheric aqueous phase chemistry
 - 3.1. Preliminary Remarks
 - 3.2. Halogen activation of the stratosphere
- 4. Tropospheric aqueous phase chemistry
 - 4.1. Preliminary remarks
 - 4.2. S (IV) oxidation, rural atmosphere
 - 4.3. S (IV) oxidation, urban atmosphere
 - 4.4. Aqueous phase oxidation of formaldehyde

Properties of Oceans, Inland Seas, Coastal Zones, and Estuaries

281

Natalya Nikolaevna Mitina, Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Oceans
 - 2.1. Characteristics of Ocean Water (Seawater)
 - 2.2. Current Systems
- Seas
 - 3.1. Classification of seas
 - 3.2. Inland Seas
- 4. Coastal zone
- 5. River mouth areas
 - 5.1. Deltas
 - 5.2. Estuaries
- 6. Marine pollution
- 7. Science and the World Ocean

Physical Properties of Seawater, Including its Three Phases

311

Valery Nikolaevich Zyryanov, Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Liquid phase
 - 2.1. Temperature
 - 2.1.1. The thermal conductivity, specific heat capacity, and evaporation heat
 - 2.2. Salinity
 - 2.3. Density
 - 2.3.1. Thermal expansion and maximum density
 - 2.3.2. The effect of compaction in mixing of seawater masses
 - 2.3.3. Viscosity and surface tension
 - 2.4. Pressure
 - 2.4.1. Compressibility and the speed of sound
- 3. Solid phase: sea ice
- 4. Gas phase: vapor
 - 4.1. Aqueous tension

Chemical Properties of the World Ocean

342

Viktor Volfovich Sapozhnikov, Russian Federal Research Institute of Fisheries and Oceanology, Moscow, Russia

- 1. Geochemical formation of the World Ocean and its salt composition
- 2. Appearance of photosynthetic organisms and a cardinal change in the oceanic geochemistry
- 3. Modern salt composition of seawater. "Law of the basic macroion composition stability"
- 4. Seawater as the unique natural formation and the cradle of Life on the Earth
- 5. Organic compounds and nutrients of seawater
- 6. Chemical peculiarities of inland seas, coastal zones, and estuaries
- 7. Seawater dissolved gases

Properties of Oceans, Inland Seas, Coastal Zones and Estuaries: Biological Properties

359 ow. Russia

M. E. Vinogradov and A. L. Vereshchaka, Institute of Oceanology, Nakhimov Prospekt, Moscow, Russia

- 1. The Ocean
 - 1.1. The Ocean as a part of the Earth biosphere
 - 1.2. Basic ecological groups of the oceanic community
 - 1.3. Biodiversity

- 1.4. Creation of the primary organic matter
- 1.5. Trophic relations and food web
- 1.6. Biological zonality of the Ocean
 - 1.6.1. Latitudinal zonality
 - 1.6.2. Circumcontinental zonality
 - 1.6.3. Vertical zonality
 - 1.6.3.1. Pelagic domain
 - 1.6.3.2. Benthic domain
- 1.7. Biogeography
 - 1.7.1. Pelagic domain
 - 1.7.2. Benthic domain
- 1.8. Quantitative distribution of life in the Ocean.
- 1.9. Biological resources of the Ocean
- 2. Inland Seas
- 3. Estuaries

Global Variations of Chemical Composition of Oceans, Inland Seas, Coastal Zones, and Estuaries

383

Viktor Volfovich Sapozhnikov, Russian Federal Research Institute of Fisheries and Oceanology, Moscow, Russia

- 1. Salinity distribution in the World Ocean
- 2. General regularities of nutrient distribution
- 3. Subsurface maximum and deep-water minimum of oxygen, and deep-water maximum phosphates and nitrates
- 4. Major chemical and oceanographic areas of the World Ocean
- 5. Anaerobic zones. Chemical peculiarities
- 6. Hydrochemical processes in estuaries

Index 403

About EOLSS 409

VOLUME II

Properties of Rivers, Streams, Lakes and Wetlands

1

Nikolay Ivanovich Alekseevskiy, Department of Geography, Moscow State University, Russia

- 1. Physical aspects of water
- 2. Chemical aspects of water
- 3. Suspended sediment
- 4. Density
- 5. Other physical and chemical parameters
- 6. Biological factors

Physical Properties of Water in Various Aggregative States

21

Nikolay Ivanovich Alekseevskiy, Department of Geography, Moscow State University, Russia

- 1. Common information
 - 1.1. Freezing
 - 1.2. Evaporation
 - 1.3. Isotopic aspects
 - 1.4. Molecular structure

- 2. Physical water properties
 - 2.1. Density
 - 2.2. Phase change
 - 2.3. Viscosity
 - 2.4. Surface tension
 - 2.5. Conductivity
 - 2.6. Reflectivity and absorption of solar energy

Water Chemical Composition of Rivers, Lakes and Wetlands

42

Anatoly Maximovich Nikanorov, Hydrochemical Institute of the Federal Service of Russia for Hydrometeorology and Monitoring of Natural Environment, Rostov-on-Don and Institute of Water Problems, RAS, Rostov-on-Don, Russia

Lidiya Valerianovna Brazhnikova, Hydrochemical Institute of the Federal Service of Russia for Hydrometeorology and Monitoring of Natural Environment, Rostov-on-Don, Russia

- 1. Introduction
- 2. Chemical Composition of Natural Waters
 - 2.1. Main ions
 - 2.2. Ions of Hydrogen
 - 2.3. Dissolved Gases
 - 2.4. Biogenous Substances
 - 2.5. Organic Matters
 - 2.6. Microelements (microcomponents)
 - 2.7. Water Classification
- 3. Formation of Natural Water Chemical Composition
- 4. Rivers
 - 4.1. The Amazon River
- 5. Lakes
 - 5.1. Lake Baikal
- 6. Wetlands

Biological Properties of Freshwater Bodies

80

Tatyana Ivanovna Moiseenko, Water Problems Institute, Russian Academy of Sciences, Russia

- 1. Introduction
- 2. Main Features of Biological Structure of Fresh Waters
 - 2.1. Lakes
 - 2.2. Streams and rivers
 - 2.2.1. Upper reaches of rivers (streams)
 - 2.2.2. Trout zone
 - 2.2.3. Carp zone
 - 2.2.4. Lower reaches of river
 - 2.3. Wetlands
- 3. Biological Productivity
- 4. Biodiversity
- 5. Biological Self-purification of Water Bodies
- 6. Biogeochemical Properties
- 7. Structural and Functional Peculiarities of Freshwater Ecosystems
- 8. Consequences of Anthropogenic Impacts
- 9. Biological Properties of Freshwater Bodies for Life-Support Systems

Variation in the Chemical Composition of Rivers, Lakes and Wetlands

95

Anatoly Maximovich Nikanorov, Hydrochemical Institute of the Federal Service of Russia for Hydrometeorology and Monitoring of Natural Environment, Rostov-on-Don, Russia Lidiya Valerianovna Brazhnikova, Hydrochemical Institute of the Federal Service of Russia for Hydrometeorology and Monitoring of Natural Environment, Rostov-on-Don, Russia

- 1. Introduction
- 2. Anthropogenic Impact on Land Surface Waters
 - 2.1. Anthropogenic Pollution of Surface Waters
 - 2.2. Anthropogenic Eutrophication
 - 2.3. Acidification of Surface Waters
- 3. The Rhine River
- 4. The Great Lakes
- 5. Wetlands

Ground and Soil Water Characteristics

117

Andrey Gurgenovich Kocharyan, Laboratory of Water Quality, Water Problems Institute, Russian Academy of Sciences, Moscow, Russia

- 1. Introduction
- 2. Water structure and its physical characteristics
 - 2.1. Spatial forms of groundwater bedding
- 3. The processes of groundwater chemical composition formation
- 4. Groundwater biological characteristics
- 5. Anthropogenic influence on ground water chemistry

Physical Properties of Soil and Ground Waters

136

Evgeny Mikhailovich Gusev, Water Problems Institute, Russian Academy of Sciences, Moscow, Russia

- 1. Biosphere Role of Soil and Ground Water from Physical Point of View
- 2. Water Equilibrium State in Soil
- 3. Soil Moisture Potential Measurement Methods
- 4. Water Transition in Soil
- 5. Soil moisture transition coefficient determination methods
- Information Support Preparation of Different Soils According to Hydrophysical Characteristics for Soil and Ground Water Dynamics Calculations
- 7. Conclusion

Chemical Properties Of Soil And Ground Waters

149

Galina Vasilievna Motuzova, Faculty of Social Science, Moscow State University, Russia Dmitry Vladimirovich Grichuk, The Geological Faculty, Moscow State University, Russia

- 1. Introduction
- 2. Approaches to the study of chemical properties of soil and ground waters
- 3. Origin and occurrence of soil and ground waters
- 4. General characterization of chemical properties of soil and ground waters
- 5. Geographical zonality of chemical properties of soil solutions and ground waters
 - 5.1. Soil solutions in the humid zone
 - 5.2. Soil solutions of the arid zone
 - 5.3. Vertical zonality of chemical composition of deep-seated subsurface waters and its causes
 - 5.4. Development of the chemical properties of subsurface waters in different water-bearing horizons
 - 5.4.1. Subsurface waters in the upper water-bearing horizon
 - 5.4.2. Subsurface waters in deep water-bearing horizons
- 6. Ecological value of soil solutions and ground waters
- 7. Conclusion

Biological Properties of Soil and Ground Waters

170

Petr Alexandrovich Kozhevin, Faculty of Social Science, Moscow State University, Russia Nadezhda Vladimirovna Verkhovtseva, Faculty of Social Science, Moscow State University, Russia

- 1. Introduction
- 2. Soil Water as a Condition for the Existence of Soil Biota
 - 2.1. Estimation of Water Demand
 - 2.2. Dependence of Soil Biota on Water Availability
- 3. Microbiology of Lithospheric Water
 - 3.1. Diversity of Ground Water Microorganisms
 - 3.2. Geochemical Activity of Microbiota in the Subsurface Biosphere
- 4. Biotic Components of Water and Sustainability of the Lithosphere
- 5. Conclusion

Global Variations in the Chemistry of Ground Water

186

Hugo A. Loaiciga, Department of Geography, University of California, Santa Barbara, California, USA

- 1. Introduction
- 2. The origin of common natural constituents in ground water
 - 2.1. Classification of ground-water chemical constituents based on typical concentrations
 - 2.2. Gases in ground water
 - 2.3. Microbes in ground water
 - 2.4. Sources and pathways of chemical constituents in ground water
 - 2.4.1. Weathering
 - 2.4.2. Oxidation-reduction reactions
 - 2.4.3. Geochemical cycles
- 3. Pollutants in ground water
 - 3.1. Drinking water
 - 3.2. Water-quality for crop plants
- 4. Policy options in ground-water quality management

Properties of Glacial, Iceberg and Permafrost Water

205

Yurij Kirillovich Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

Alla Konstantinovna Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

- 1. Palaeoclimatic Studies
- 2. Physical Properties
- 3. Chemical Properties
- 4. Biologic Property
- 5. Dating of the Ice Cores and Palaeoclimatic Studies in Glaciers, Ice Sheets and Ground Ice
- 6. ¹⁴C-dating of Air Bubbles in the Ice
- 7. 10 Be/ 36 Cl –dating
- 8. Ground Ice Dating
- 9. Tritium
- 10. The Oldest Ice of the Earth
- 11. Reconstruction of Past Atmospheric CO₂ by Ice Core Analysis
- 12. Methane
- 13. Comparison of Isotope Records of Cryosphere Objects
- 14. Catastrophes' Record in the Ice

Physical Properties of Glacial and Ground Ice

237

Yurij Kirillovich Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

- 1. History of Glacier Study
- 2. Structure of Ice Crystal
- 3. The Transformation of Snow to Ice
- 4. Glacier Classification
- 5. Variations of Density with Depth
- 6. Disappearance of Air Bubbles
- 7. Mechanical Properties
 - 7.1. Deformation of a Single Ice Crystal
 - 7.2. Deformations of Polycrystalline Ice
 - 7.3. Deformation of the Ice
- 8. Mass Balance of a Glacier
- 9. Distribution of Temperature in Glaciers and Ice Sheets
- 10. Temperature of a Temperate Glacier
- 11. Distribution of Temperate Glaciers
- 12. Ice Structures and Fabrics in Glaciers and Ice Sheets
- 13. Ground Ice Crystallography
- 14. Thaw Unconformities
 - 14.1. Ice Melting in Non-cohesive Frozen Ground Caused by Local Pressure
- 15. Mechanical Properties
 - 15.1. Ice Strength
 - 15.2. Internal Friction
 - 15.3. Density and Porosity
 - 15.4. Poisson Ratio
 - 15.5. Thermal Strain
 - 15.6. Thermal Conductivity
 - 15.7. Temperature Conductivity-Thermodiffusion
 - 15.8. Heat of Fusion
 - 15.9. Latent Sublimation Heat
 - 15.10. Heat Capacity
 - 15.11. Pressure Influence on Heat of Fusion. Regelation
 - 15.12. Volumetric Diffusion and Surface Ice Energy
- 16. Electrical Properties
 - 16.1. Relative Permittivity of Fresh Ice
 - 16.2. The Electrical Properties of the Ice Cores

Chemical Properties of Glacial and Ground Ice

265

Yurij Kirillovich Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

- 1. Ionic Composition in Glaciers
- 2. Ice and Snow Chemistry
- 3. Ion Migration in Ice and Frozen Soils
- 4. Methane Hydrate
- 5. Chemical Physics of Air Clathrate Hydrates in Ice Core
- 6. Chemistry of Ice in Dependence of Electrical Conductivity
- 7. Ionic Composition in Ground Ice
- 8. Subpermafrost Water Geochemistry
- 9. Heavy Metals in Glaciers
- 10. Heavy Metals in Ground Ice
- 11. Stable Oxygen and Hydrogen Isotope of the Ice
- 12. Temporal Variations of Isotopic Composition of Glacial-river Water during Summer; Oxygen Isotope Composition of Water Sources
- 13. Stable Isotope Composition in Glaciers
- 14. Stable Isotopes in Ground Ice
- 15. Isotope Composition of Ice-wedge Ice

Biological Properties of Glacial and Ground IceYurii Kirillovich Vasil'chuk Departments of Geography and Geology Lomonosov's Moscow

Yurij Kirillovich Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

Alla Konstantinovna Vasil'chuk, Departments of Geography and Geology, Lomonosov's Moscow State University, Moscow, Russia

- 1. Plant Remains
- 2. Diatoms
- 3. Pollen and Spores in Glaciers
- 4. Pollen and Spores in Ground Ice
- 5. Enzymatic Activity
- 6. Enzymatic Activity in Glaciers
- 7. Enzymatic Activity in Ground Ice
- 8. Proteolytic Activity in Ground Ice
- 9. Microbes in Permafrost and Ice
- 10. Ice Man
- 11. Mammoth Carcasses

Index	319

About EOLSS 325

295