
CONTENTS

WATER QUALITY AND STANDARDS

Water Quality and Standards - Volume 1 No. of Pages: 372 ISBN: 978-1-84826-030-6 (eBook) ISBN: 978-1-84826-480-9 (Print Volume)

Water Quality and Standards - Volume 2 No. of Pages: 266 ISBN: 978-1-84826-031-3 (eBook) ISBN: 978-1-84826-481-6 (Print Volume)

For more information of e-book and Print Volume(s) order, please **click here**

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Water Quality and Standards

1

Hideo Utsumi, Faculty of Pharmaceutical sciences, Kyushu University, Fukuoka, Japan Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Health-related Water Quality
 - 2.1. Microbial aspects
 - 2.2. Chemical aspects
 - 2.3. Radiological aspects
 - 2.4. Acceptability aspects
- 3. Water Contaminants
 - 3.1. Microbial aspects
 - 3.1.1. Bacterial pathogens of fecal origin
 - 3.1.2. Viral pathogens of fecal origin
 - 3.1.3. Protozoan pathogens of faecal origin
 - 3.1.4. Helminths
 - 3.2. Chemical aspects
 - 3.2.1. Naturally occurring Chemicals
 - 3.2.2. Chemicals from Industrial Sources and Human Dwellings
 - 3.2.2.1. Inorganics
 - 3.2.2.2. Organics
 - 3.2.3. Chemicals from Agricultural Activities
 - 3.2.3.1. Non-Pesticides
 - 3.2.3.2. Insecticides
 - 3.2.3.3. Herbicides and Fungicides
 - 3.3. Radiological aspects
 - 3.3.1. Units of radioactivity and radiation dose
 - 3.3.2. Dose conversion factors
 - 3.3.3. Radon in the water
- 4. Standards
 - 4.1. microbial aspects
 - 4.1.1. DALYs
 - 4.1.2. microbial hazards in drinking-water
 - 4.1.3. The specific indicator for microvial aspects
 - 4.2. Chemical aspects
 - 4.2.1. Threshold chemicals
 - 4.2.2. Non-threshold chemicals
 - 4.3. Radiological aspects
- 5. Water Quality and Standards for Different Sectors and Use
 - 5.1. Water quality and standards for agriculture
 - 5.1.1. Rainfall
 - 5.1.2. Irrigation
 - 5.2. Water quality and standards for aquaculture
 - 5.2.1. Aquaculture
 - 5.2.2. Fisheries
 - 5.3. Water quality and standards for industrial water
 - 5.3.1. Cooling water
 - 5.3.2. Ultra-pure water
 - 5.4. Water quality and standards for emergency and disaster use
 - 5.4.1. Practical strategy in emergencies
 - 5.4.2. Monitoring the water quality

- 5.4.3. Microbial guidelines
- 5.4.4. Guidelines for chemicals and radiation
- 6. Water Quality and Standards for Aquatic Environments
 - 6.1. Environmental quality standards for human health
 - 6.2. Environmental quality standards for the conservation of the living environment
- 7. Effluent Standards

Water Quality Standards, and Monitoring

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Drinking water quality standards and their development
 - 2.1. WHO drinking water quality guidelines
 - 2.2. Health related chemicals
 - 2.2.1. Threshold chemicals
 - 2.2.2. Non-threshold chemicals
 - 2.3. Microbiological aspects
 - 2.4. Acceptability aspects
 - 2.5. Development of national drinking water quality standard
- 3. Wastewater quality standard
- 4. Water quality consideration in various water uses
 - 4.1. Agricultural water use and preventive measures to salinization
 - 4.2. Aquaculture water use and public health consideration
 - 4.3. Wastewater reuse and public health consideration
- 5. Ambient water quality standards
 - 5.1. Water quality standards for rivers
 - 5.2. Water quality standards for lakes
 - 5.3. Water quality standards for coastal water bodies
- 6. Monitoring
 - 6.1. Drinking water quality monitoring
 - 6.2. Surface water monitoring
 - 6.2.1. River water monitoring
 - 6.2.2. Lake water monitoring
 - 6.3. Groundwater monitoring

Basic Concepts and Definitions in Water Quality and Standards 105

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Water quality standards and their development
 - 2.1. Concepts
 - 2.2. Evaluation of standards
 - 2.3. WHO guidelines for drinking water quality
 - 2.4. United States of America EPA water quality regulations
- 3. Monitoring and assessment of water quality standards
 - 3.1. Monitoring parameters and frequencies
 - 3.1.1. Parameters related to human health
 - 3.1.2. Parameters related to living environment
 - 3.2. River water
 - 3.3. Groundwater
 - 3.3.1. Types of groundwater quality surveys
 - 3.3.2. Survey parameters and frequencies
 - 3.3.3. Survey locations
 - 3.4. Others
 - 3.4.1. Lakes and reservoirs
 - 3.4.2. Coastal areas

3.4.3. Wastewater

- 4. Roles and functions of stakeholders
 - 4.1. Central government
 - 4.2. Local government
 - 4.3. Industries
 - 4.4. Local populace

Classification of Water Quality Standards

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Drinking water quality standards
- 3. Ambient water quality standards
 - 3.1. Water quality standards for rivers
 - 3.2. Water quality standards for lakes
 - 3.3. Water quality standards for coastal water bodies

Assessment of Standards

Masanori Ando, Musashino University, Japan

- 1. Introduction
- 2. Categorization of Source of Chemical Constituents
- 3. Conceptual Development of Risk Assessment
 - 3.1. Definition of Risk Assessment
 - 3.2. Historical Overview of Risk Analysis
- 4. Risk Assessment Process
 - 4.1. Health Outcome Targets
 - 4.2. Approaches to Risk Analysis
- 5. Hazard Identification
 - 5.1. Sources of Information on Health Effects
 - 5.1.1. Epidemiologic Data
 - 5.1.2. Animal Data
 - 5.2. Carcinogenic and Non-Carcinogenic Chemicals
 - 5.2.1. Carcinogenic Chemicals
 - 5.2.1.1. Genotoxic Carcinogenic and Non-Genotoxic Carcinogenic Chemicals
 - 5.2.1.2. Classification of Carcinogenic Chemicals
 - 5.2.2. Non-Carcinogenic Chemicals
 - 5.2.2.1. Acute Toxicity
 - 5.2.2.2. Subchronic and Chronic Toxicity
- 6. Dose-Response Assessment
- 6.1. Threshold Chemicals
 - 6.1.1. No-Observed-Adverse-Effect Level and Lowest-Adverse-Effect Level
 - 6.1.2. Assumptions and Uncertainties on the Health Risk Analysis
 - 6.1.2.1. Uncertainty Factors
 - 6.1.2.2. Allocation of Intake
 - 6.1.2.3. Default Assumptions
 - 6.1.2.4. Alternative Approaches
 - 6.1.3. Calculation Procedure of Tolerable Daily Intake
 - 6.1.4. Cancer Risk Assessment Models and Cancer Potency
 - 6.1.4.1. Non-Genotoxic Carcinogen to Animal Tests
 - 6.1.4.2. Epidemiology
 - 6.2. Cancer Risk Assessment Models on Non-Threshold Chemicals
- 7. Exposure Assessments
 - 7.1. Verification and Perception of Risk
 - 7.2. Exposure Assessment
- 8. Risk Characterization

122

135

iii

Natural Waters

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Characteristics of Water
- 3. Distribution of Water on the Earth
 - 3.1. Distribution
 - 3.2. Water Cycle
- 4. Seawater
 - 4.1. Constituents of Seawater
 - 4.2. Main Elements of Seawater
 - 4.3. Micro and Trace Elements in Seawater
 - 4.4. Dissolved Gases in Seawater
 - 4.5. Water Quality of Deep Seawater
- 5. Rain
 - 5.1. Water Quality of Rain
- 6. Terrestrial Water
 - 6.1. Water Quality of Surface Water
 - 6.2. Water Quality of Lakes
 - 6.2.1. Hydrologic Cycle in Lakes
 - 6.2.2. pH
 - 6.2.3. DO
- 7. Groundwater
- 8. Glaciers and Icecaps
 - 8.1. Snow
 - 8.2. Glaciers
 - 8.3. Elements in Snow and Ice

Surface Water Monitoring

Masanori Ando, Musashino University, Japan

- 1. Introduction
- 2. Outline of Surface Water
- 3. Monitoring Program for Surface Water
 - 3.1. Objectives of Program for Surface Water Monitoring
 - 3.2. Classification of Program for Surface Water Monitoring
 - 3.2.1. General
 - 3.2.2. Routine Monitoring Network
 - 3.2.3. Intensive Surveys
 - 3.2.4. Special Studies
 - 3.2.5. Industrial Water and Affected Fields Studies
- 4. Establishment of General Monitoring Location
 - 4.1. Selecting a Monitoring Site
 - 4.1.1. Site Access
 - 4.1.2. Historical Sites
 - 4.1.3. Designated Uses
 - 4.1.4. Locating Representative Sites
 - 4.1.4.1. Mixing Zones
 - 4.1.4.2. Monitoring Below Dams
 - 4.1.5. Representative Monitoring Site
 - 4.2. Identifying the Sampling Location
 - 4.3. Industrial Water Monitoring Site and Considered Concepts
- 5. Designs of Sampling Programs
 - 5.1. Broad Objectives for the Design of Sampling Programs
 - 5.2. General Design
 - 5.3. Specific Considerations in Relation to Variability

167

- 5.4. Quality and Quantity of Information
- 5.5. Time and Frequency of Sampling
- 5.6. Flow Conditions for Collecting Samples
 - 5.6.1. Metals-in Water Samples
 - 5.6.2. Sediment and Tissue Samples
 - 5.6.3. Flow Data Requirements
- 5.7. Avoidance of Contamination
- 6. Flow Measurements for Understanding of Water Quality
- 7. Sampling Techniques and Equipment
 - 7.1. Sampling Techniques
 - 7.2. Sampling Equipment
 - 7.3. Sampling Equipment for Physical or Chemical Characteristics
 - 7.4. Sampling of Microbiological Organisms Cause Enteric Illness
- 8. Transport to, and Storage for Samples at, the Depot or Laboratory

Groundwater Monitoring

Masanori Ando, Musashino University, Japan

- 1. Introduction
- 2. Outline of Groundwater
 - 2.1. The Hydrologic Cycle
 - 2.2. Principles of Groundwater
 - 2.3. Groundwater Use
- 3. Monitoring Program for Groundwater
 - 3.1. Objectives of Groundwater Monitoring
 - 3.2. Classification of Monitoring Program
 - 3.3. Strategies of Groundwater Monitoring
- 4. Sampling Groundwater
 - 4.1. General
 - 4.2. Unsaturated Zone Monitoring
 - 4.3. Saturated Zone
- 5. Selection of Sampling Point Location
 - 5.1. General
 - 5.2. Point Source Contamination of Groundwater
 - 5.3. Diffuse Contamination of Groundwater
 - 5.4. Surveillance of Groundwater Quality for Potable Supplies
- 6. Contaminants in Groundwater
 - 6.1. Groundwater Parameter Selection
 - 6.2. Behavior and Characteristics of Contaminants in Groundwater
- 7. Sampling Frequency
- 8. Types of Sampling Equipment

Water Quality Needs and Standards for Different Sectors and Uses

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan Harukuni Tachibana, Associate Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Health care and emergency measures
 - 2.1. Health care
 - 2.1.1. Water quantity requirements
 - 2.1.2. Water quality requirements
 - 2.1.2.1. WHO guidelines for drinking water quality
 - 2.1.2.2. Water for medical purposes
 - 2.2. Water supply for emergency situations
 - 2.2.1. Enhanced disinfection
 - 2.2.2. 'Boil water' notice

- 3. Water quality needs for agriculture
 - 3.1. Irrigation water and salinization
 - 3.2. Salinity and osmotic pressure
 - 3.3. Control of salinization
- 4. Water quality needs for aquaculture and fisheries
 - 4.1. Water quality for ecological conservation of aquatic environment
 - 4.1.1. Death and disease of aquatic lives
 - 4.1.2. Toxicity test and lethal limits of pollutants
 - 4.1.3. Ecological safety
 - 4.1.4. Saprobity system of water quality
 - 4.2. Problems of consuming aquatic products as food
 - 4.3. Eutrophication of aquaculture system
 - 4.4. Endocrine disrupting chemicals
 - 4.4.1. Problems associated with endocrine disrupting chemicals
 - 4.4.2. Bioassay for acute and sub-chronic effects of EDs to medaka
 - 4.4.2.1. Acute effect
 - 4.4.2.2. Sub-chronic effect
- 5. Water quality for industry
 - 5.1. Industrial water consumption
 - 5.2. Water quality management of cooling water
 - 5.2.1. pH
 - 5.2.2. Electrolytic conductivity
 - 5.2.3. Chloride ion
 - 5.2.4. Sulfuric acid
 - 5.2.5. Methyl-red alkalinity (acid consumption)
 - 5.2.6. Hardness
 - 5.2.7. Silicate ion
 - 5.2.8. Free carbonate
 - 5.2.9. Iron and manganese
 - 5.2.10. Ammonium ion
 - 5.2.11. Potassium permanganate consumption value
 - 5.2.12. Turbidity
 - 5.2.13. Langelier index

Water Supply and Health Care

219

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

Hideo Utsumi, Faculty of Pharmaceutical sciences, Kyushu University, Fukuoka, Japan

- 1. Introduction
- 2. Drinking water
 - 2.1. Contamination of water sources
 - 2.1.1. Contamination by aquatic organisms
 - 2.1.2. Contamination of chemicals
 - 2.1.3. Contamination by naturally occurring chemicals
 - 2.2. Synthesis of the new chemicals by water purification
 - 2.2.1. Disinfection by-products
 - 2.2.2. Other problems with chlorination
 - 2.3. Contamination of tap water during the distribution process
 - 2.3.1. Influence from distribution pipes
 - 2.4. Pharmaceuticals in water
 - 2.4.1. Effects of pharmaceuticals on humans and the aquatic environment
 - 2.4.2. Pharmaceuticals in drinking water
- 3. Swimming pool water
 - 3.1. Management of swimming pool water

Water supply for Agriculture, Aquaculture, and Fisheries

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Water for agricultural use
 - 2.1. Rainfall
 - 2.2. Irrigation
 - 2.3. Source of water for irrigation
 - 2.4. Irrigation water quality and guidelines
- 3. Water for aquaculture
 - 3.1. Water quality
 - 3.2. Water quality guidelines for aquaculture
- 4. Water for fisheries
 - 4.1. Oil
 - 4.2. Metals
 - 4.3. Organic chlorine compounds
 - 4.4. Nitrogen and phosphorous
 - 4.5. Endocrine disrupters

Evaluation of Water Quality in Aquatic Ecosystems

Harukuni Tachibana, *Hokkaido University, Sapporo, Japan* Toshiro Maruyama, *Miyazaki University, Miyazaki, Japan* Yashumoto Magara, *Hokkaido University, Sapporo, Japan*

- 1. Introduction
- 2. Saprobity system
- 3. Hazardous chemical management for protecting aqua ecosystem
- 4. Effects of chlorine-disinfected wastewater on the growth of Nori

Industrial Water

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

1. Introduction

2.

- Industrial water consumption
- 3. Cooling water
 - 3.1. Water quality management of cooling water
 - 3.1.1. pH
 - 3.1.2. Electrolytic conductivity
 - 3.1.3. Chloride ion
 - 3.1.4. Sulfuric acid
 - 3.1.5. Methyl-red alkalinity (acid consumption)
 - 3.1.6. Hardness
 - 3.1.7. Silicate ion
 - 3.1.8. Free carbonate
 - 3.1.9. Iron and manganese
 - 3.1.10. Ammonium ion
 - 3.1.11. Potassium permanganate consumption value
 - 3.1.12. Turbidity
 - 3.1.13. Langelier index
 - 3.2. Water treatment of cooling water
 - 3.2.1. Scale and corrosion control
 - 3.2.2. Slime prevention
- 4. Ultra-pure water
 - 4.1. What is ultra-pure water?
 - 4.2. Integration level of LSI and trend of quality of ultra-pure water

vii

238

251

- 4.3. Recent ultra-pure water
- 4.4. Processing method of ultra-pure water
 - 4.4.1. Pre-processing system
 - 4.4.2. Primary pure water processing system
 - 4.4.3. Secondary pure water processing system (sub system)
- 5. Circulated use of water in main industries
 - 5.1. Basic principle of circulated use
 - 5.1.1. Indirect use and direct use
 - 5.1.2. Principle of water circulation
 - 5.1.3. Setting and control of quality of water
 - 5.2. Examples of circulated use
 - 5.2.1. Steel mill
 - 5.2.2. Thermal electric power plant
 - 5.2.3. Paper mill
 - 5.2.4. Drinking water production plant

Management of Water Supplies after a Disaster

Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan Hiroshi Yano, Director, Kobe Municipal Water Works Bureau, Kobe, Japan

- 1. Introduction
- 2. Damage to water supply
 - 2.1. Summary of damage
 - 2.2. Summary of damage to water supply facilities
- 3. Responses of Hyogo Prefecture
 - 3.1. Response on the Earthquake Day (17th January)
 - 3.2. Establishment of the emergency water supply system
 - 3.3. Water for medical facilities
 - 3.4. Domestic water supply for evacuation centers
 - 3.5. Outlines of emergency water supply
 - 3.6. Water quality management
- 4. Restoration
 - 4.1. Establishment of restoration system
 - 4.2. Activities of the second week
 - 4.3. Insufficient quantity for water supply
 - 4.4. Emergency water drawn from the Yodo River
 - 4.5. Completion of restoration
- 5. Water quality management in emergency water supply
- 6. Lessons learnt from disaster
 - 6.1. Preparation and provision
 - 6.2. Emergency water supply
 - 6.3. Restoration works
 - 6.4. Enhanced disinfection
 - 6.5. 'Boil water' notice
- 7. Improvement against disaster
 - 7.1. Wide area mutual aid agreements
 - 7.2. Review of local disaster prevention plan
 - 7.3. Monitoring systems

Index

About EOLSS

292

©Encyclopedia of Life Support Systems (EOLSS)

VOLUME II

Effects of Human Activities on Water Quality

Koichi Fujie, Department of Ecological Engineering, Toyohashi University of Technology, Japan Hong-Ying Hu, ESPC, Department of Environmental Science and Engineering, Tsinghua University, China

- 1. Modern history of water pollution
- 2. Countermeasures for water pollution control
 - 2.1. Management and control of manufacture, and use of chemicals.
 - 2.2. Minimization of pollutant discharge from production processes.
- 3. Present situation of water quality

Hydrologic Cycle and Water Usage

Koichi Fujie, Department of Ecological Engineering, Toyohashi University of Technology, Japan Hong-Ying Hu, ESPC, Department of Environmental Science and Engineering, Tsinghua University, China

- 1. Stocks of water on the Earth
- 2. Hydrologic cycle
- 3. Water balance and usage
- 4. Preservation and effective use of water resources

Minimizing Loads on Water Bodies

Koichi Fujie, Department of Ecological Engineering, Toyohashi University of Technology, Japan Hong-Ying Hu, ESPC, Department of Environmental Science and Engineering, Tsinghua University, China

- 1. Self-purification of natural water bodies
- 2. Kinetics of self-purification in natural water bodies
- 3. Minimization of pollutants loading to natural water bodies
 - 3.1. Minimizing discharge of pollutants to water bodies
 - 3.2. Procedures to minimize pollution discharge

Groundwater Degradation by Human Activities

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Causative materials contaminating groundwater
- 3. Metals and inorganic compounds
 - 3.1. Chromium
 - 3.2. Arsenic
 - 3.2.1. Chemical form and environment dynamic phase of the arsenic
 - 3.3. Cyanide
 - 3.4. Nitrate and nitrite
- 4. Chlorinated organic compounds
- 5. Agricultural Chemicals
- 6. Pharmaceutical and personal care products (PPCPs)
- 7. Environmental pollution by the final disposal site leachate
- 8. Environmental standard item and detection status of the groundwater in Japan

Surface Water Degradation by Human Activities

Yun. S. Kim, Water Analysis and Research Center, K-water, Daejeon, Korea

13

21

6

- 1. Introduction
- 2. Causative materials for contamination of surface water
- 3. Heavy metals
- 4. Pollution for the phthalate esters caused from human activities
- 5. Endocrine disrupting chemicals
- 6. Persistent organic pollutants (POPs)
 - 6.1. Organic chlorinated chemicals
 - 6.2. Organic phosphorylated chemicals
 - 6.3. Other agricultural chemicals
 - 6.4. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)
- 7. 7. Evaluation of aquatic environment using stable isotope ratio of nitrogen and carbon in sediments and aquatic organisms

Pollution Sources

50

Yuhei Inamori, National Institute for Environmental Studies, Tsukuba, Japan Naoshi Fujimoto, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

- 1. Introduction
- 2. Pollution of organic matter, nitrogen and phosphorus
 - 2.1. Adverse effects of organic matter, nitrogen and phosphorus
 - 2.1.1. Organic matter
 - 2.1.2. Nitrogen and phosphorus
 - 2.2. Pollution source of organic matter, nitrogen and phosphorus
 - 2.2.1. Domestic wastewater
 - 2.2.2. Industrial wastewater
 - 2.2.3. Sewage effluent
 - 2.2.4. Livestock industry
 - 2.2.5. Fish farming
 - 2.2.6. Landfill leachate
- 3. Pollution of heavy metals and inorganic compounds
 - 3.1. Adverse effects of heavy metals and inorganic compounds
 - 3.2. Pollution source of heavy metals and inorganic compounds
- 4. Pollution of harmful organic compounds
 - 4.1. Adverse effect and pollution source of organochlorine compounds
 - 4.2. Adverse effects and pollution sources of agricultural chemicals
 - 4.3. Adverse effects and sources of dioxins
 - 4.4. Adverse effects and sources of endocrine disruptors
- 5. Countermeasures against water pollution
- 6. Other forms of pollution
 - 6.1. Oceanic pollution
 - 6.2. Emission of SOx and NOx causing acid rain
 - 6.3. Thermal pollution

Point Sources of Pollution

Yuhei Inamori, National Institute for Environmental Studies, Tsukuba, Japan Naoshi Fujimoto, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

- 1. Introduction
- 2. Kind of point sources
 - 2.1. Percentage of point source loading to total pollution loading
 - 2.2. Domestic wastewater
 - 2.3. Industrial wastewater
 - 2.3.1. Food industry
 - 2.3.2. Chemical industry
 - 2.3.3. Livestock industry and fish farm

- 3. Countermeasures for point source Pollution
- 4. Wastewater treatment processes
 - 4.1. Activated sludge process and modified process
 - 4.2. Biofilm process
 - 4.3. Anaerobic treatment
 - 4.4. Thermophilic oxic process

Non-Point Sources of Pollution

Yuhei Inamori, National Institute for Environmental Studies, Tsukuba, Japan Naoshi Fujimoto, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

- 1. Introduction
- 2. Definition of a Non-point Source
- 3. Non-point Sources and its Loads
 - 3.1. Rainfall
 - 3.2. Forest
 - 3.3. Agriculture
 - 3.4. Urban runoff
- 4. Countermeasures for Non-point Source Pollution

Salinization of Soils

Hideyasu Fujiyama, Professor of Agriculture, Tottori University, Tottori, Japan Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Causes of salinization and saline soil
 - 2.1. Classification of saline soil
 - 2.2. Inhibition of plant growth
 - 2.3. Salinity and osmotic pressure
- 3. Salinity of water and soil
 - 3.1. Salinity hazard
 - 3.2. Sodium hazard
- 4. Prevention of salinization and improvement of saline soil
 - 4.1. Prevention of capillary ascent of salts
 - 4.2. Leaching
 - 4.3. Required amount of leaching water
 - 4.4. Drainage
 - 4.5. Prevention by salt-tolerant plants

Water Pollution by Agriculture and Other Rural Uses

Yuichi Fushiwaki, Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan Yashumoto Magara, Professor of Engineering, Hokkaido University, Sapporo, Japan

- 1. Introduction
- 2. Pesticides
 - 2.1. Behavior of pesticides in the atmosphere
 - 2.2. Run-off rate of pesticides from rice fields
 - 2.3. Behavior in soil
 - 2.4. Degradation by-products in water purification system
- 3. Dioxin group
 - 3.1. Characteristics of dioxin group
 - 3.2. Impurity in agricultural chemicals
 - 3.3. Contribution of agricultural activity to dioxin concentration in environmental water
- 4. Nitrate
 - 4.1. Health effects caused by nitrate

111

90

- 4.2. Nitrate pollution from agricultural activities
- 4.3. Measures against nitrate contamination
 - 4.3.1. Control of fertilizers
 - 4.3.2. Cultivation techniques
 - 4.3.3. Bio-remediation
 - 4.3.4. Comprehensive measures from non-point agricultural sources
 - 4.3.5. Water treatment technologies

Urban Water Pollution

Katsuhiko Nakamuro, Professor of Environmental Health, Setsunan University, Osaka, Japan Fumitoshi Sakazaki, Research associate of Environmental Health, Setsunan University, Osaka, Japan

- 1. Urban Sewage
- 2. Sanitary Sewage
- 3. Effects of Rainfall on Sewer
- 4. Storm Drainage
 - 4.1. Overview
 - 4.2. Pollutants in Rainwater and Runoff in Urban areas
 - 4.3. Control of Storm Drainage

Industrial Water Pollution

Katsuhiko Nakamuro, Professor of Environmental Health, Setsunan University, Osaka, Japan Fumitoshi Sakazaki, Research associate of Environmental Health, Setsunan University, Osaka, Japan

- 1. Industrial Flows
- 2. Wastewaters
- 3. Examples of Draining
 - 3.1. Draining Containing High-density Organic Compounds
 - 3.2. Draining Containing Low-density Organic Compounds
 - 3.3. Draining Containing Organic and Toxic Compounds
 - 3.4. Draining Containing General Inorganic Compounds
 - 3.5. Draining Containing Inorganic and Toxic Compounds

Contamination of Water Resources

Yuhei Inamori, National Institute for Environmental Studies, Tsukuba, Japan Naoshi Fujimoto, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

- 1. Introduction
- 2. Contamination by Hazardous Substances
- 3. Eutrophication
- 4. Contamination by Hazardous Microorganisms

Organical Chemicals as Contaminants of Water Bodies and Drinking Water

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Contamination of metabolites produced by aquatic microorganisms
 - 2.1. Volatile metabolites
 - 2.2. Toxic substances produced by blue-green algae
- 3. Contamination by industrial chemicals
 - 3.1. Volatile organic compounds (VOCs)
 - 3.2. Raw materials of plastics
- 4. Pesticides

129

134

141

- 5. Unintentionally generate substances
 - 5.1. Dioxins
 - 5.2. Polynuclear aromatic hydrocarbons (PAHs)
- 6. Miscellaneous organic substances
- 7. Disinfectant by-products
 - 7.1. Trihalomethanes (THMs)
 - 7.2. Other chlorination by-products
 - 7.3. Precursors of chlorination by-products
- 8. Characteristics of organic pollutants in each water area
- 9. Emergent Chemicals
 - 9.1. PPCP (Pharmaceuticals and Personal Care Products)
 - 9.2. Perfluorinated chemicals
 - 9.2.1. PFOS
 - 9.2.2. PFOA
 - 9.2.3. PFOS and PFOA in aquatic environment.
 - 9.2.4. PFACs in human and wildlife

Inorganic Chemicals Including Radioactive Materials in Waterbodies

Yoshiteru Tsuchiya, Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, Japan

- 1. Introduction
- 2. Naturally Occurring Substances in Bodies of Water
 - 2.1. Arsenic
 - 2.2. Boron
 - 2.3. Fluoride
- 3. Inorganic Substances in Industrial Waste
 - 3.1. Antimony
 - 3.2. Barium
 - 3.3. Cadmium
 - 3.4. Chromium
 - 3.5. Mercury
 - 3.6. Nickel
 - 3.7. Cyanide
- 4. Inorganic Substances in Agricultural and Domestic Waste
 - 4.1. Nitrogen
- 5. Inorganic Substances in the Water Supply
 - 5.1. Aluminum
 - 5.2. Copper
 - 5.3. Lead
- 6. Radioactive Material

Microbial/Biological Contamination Of Water

Yuhei Inamori, National Institute for Environmental Studies, Tsukuba, Japan Naoshi Fujimoto, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

- 1. Introduction
- 2. Bacteria
- 3. Viruses
- 4. Pathogenic Protozoa
- 5. Cyanobacteria
- 6. Dinoflagellates
- 7. Removal of Pathogenic Microorganisms by Biological Treatment

Physical/Mechanical Contamination Of Water

Yuhei Inamori, National Institute for Environmental Studies, Japan

204

194

Naoshi Fujimoto, Tokyo University of Agriculture, Japan

- 1. Introduction
- 2. Color and Turbidity
- 3. Odor and Taste
- 4. Alkalinity, pH and Hardness
- 5. Radionuclides
- 6. Contamination caused by ships

Index

211

About EOLSS