CONTENTS

ENVIRONMENTAL STRUCTURE AND FUNCTION: EARTH SYSTEM

Environmental Structure and Function: Earth System

ISBN: 978-1-84826-292-8 ISBN: 978-1-84826-742-8

No. of Pages: 488

For more information of e-book and Print Volume(s) order, $\underline{\text{please } \text{click}}$ $\underline{\text{here}}$

Or contact: eolssunesco@gmail.com

CONTENTS

	4
Composition and Structure of the Atmosphere	
•	-
Zoitaava Nina A Buggian Anadamu of Coinneas Donartu out of Earth Coinneas Buggia	
Zaitseva Nina. A., Russian Academy of Sciences, Department of Earth Sciences, Russia	

- 1. Introduction
- 2. Brief history of atmospheric studies: a short overview
- 3. Meteorological elements and units of measurement
- 4. Composition of the Atmosphere
- 5. Structure of the Atmosphere

Chemistry of the Atmosphere

25

I.L. Karol and A.A. Kiselev, Main Geophysical Observatory, St. Petersburg, Russia

- 1. Types of atmospheric reactions
 - 1.1. Photolysis Reactions
 - 1.2. Bimolecular Reactions
 - 1.3. Association Reactions
 - 1.4. Heterogeneous Reactions
 - 1.5. Reactions in the Aqueous Environment
- 2. Atmospheric catalytic cycles
- 3. Residence time and photochemical equilibrium
- 4. Groups or "families" of atmospheric compounds
 - 4.1. Odd Oxygen Group
 - 4.2. Hydrogen Group
 - 4.3. Nitrogen Group
 - 4.4. Carbon Containing Compounds
 - 4.5. Chlorine and Bromine Group
 - 4.6. Sulfur Group

Snow Cover 49

Kotlyakov Vladimir M, Institute of Geography, Russian Academy of Sciences

- 1. Distribution and Properties of Snow Cover
- 2. Wind Transport of Snow (Snow Drifting)
- 3. Snow Cover in a Routine Life
- 4. Climatic Role of Snow Cover

Pedosphere Is The Soil Cover Of The Earth (Is The Earth's Mantle Of Soil)

75

Gleb Vsevolodovich Dobrovolsky, Institute of Ecological Pedology (Soil Science), Lomonosov Moscow State University, Moscow, Russia

- 1. General Notion of the Pedosphere
- 2. Diversity of Soils as Components of the Pedosphere
- 3. Ecologic Role of the Soil Properties and Functions for the Biosphere
- 4. Geography and Structure of the Pedosphere
- 5. Degradation of Soils and Threat of Ecological Crisis

Genesis Of Soils And Factors Of The Soil Formation

95

Vladychenskiy A.S., Lomonosov Moscow State University, Department of Soil Science, Moscow, Russia

- 1. Soil Formation is the Global Natural Process
- 2. Factors of the Soil Formation
- 3. Stages of the Soil Formation
- 4. Processes of the Soil Formation
- 5. Genesis of Soils under Different Ecologic Conditions
 - 5.1. Genesis of soils under conditions of cryogenesis
 - 5.2. Genesis of soils of forest landscapes in a zone of moderate climate
 - 5.3. Genesis of soils in landscapes of steppes and prairies
 - 5.4. Genesis of soils in arid landscapes of semi-deserts and deserts
 - 5.5. Genesis of soils in wet tropics and subtropics
 - 5.6. Genesis of soils under conditions of excessive moistening
 - 5.7. Genesis of salinized (saline) soils
 - 5.8. Genesis of soils under conditions of the present-day sedimentation

Diversity and Systematization of Soils

107

Prokofieva T.V., Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia

- 1. Introduction: Diversity of Factors is the Diversity of Soil Characteristics (Properties)
- 2. Classifications of Soils
- 3. World Soil Maps and World Classifications
- 4. Classification "WRB for Soil Resources"
- 5. Diversity of Soils and Problems of the Biodiversity Preservation

Geography And Structure Of The World Soil Cover (Pedosphere)

122

Stroganova M.N. and Urusevskaya I.S., *Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia*

- 1. Introduction
- 2. Principles and Taxonomic System of Soil-Geographic Zoning
- 3. Soil-Geographic Belts And Soil-Bioclimatic Areas Of The World
 - 3.1. Soil Cover of The Polar Belt
 - 3.2. Soil Cover Of The Boreal Belt
 - 3.3. Soil Cover Of Subboreal Belt
 - 3.4. Soil cover of subtropical belt
 - 3.5. Soil Cover Of Tropical Belt
- 4. Detailed Soil-Geographic Zoning
- 5. Conclusion

Plants And Soil Moisture

144

Sudnitsyn Ivan I. and Shein Evgeniy V., Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia

- 1. Water in Soil and Plants is an Object of Inter-disciplinary Investigation
- 2. Plants and Soils are Thermodynamic Systems
- 3. Laws of Water Movement in the Thermodynamic System "soil-plants-atmosphere"
- 4. Critical Total Soil Moisture Pressure

Soil Biota

154

Chernov Ivan Yu, Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia

1. Introduction

- 2. Biogenecity of Soil
- 3. Soil as a Habitat
- 4. Soil Biota
 - 4.1. Higher Plants
 - 4.2. Algae
 - 4.3. Soil animals
 - 4.4. Fungi
 - 4.5. Bacteria
- 5. Soil Organisms and transformation of substances

Earth As A Self-Regulating System

179

Lenton T.M., Center for Ecology and Hydrology, Edinburgh, UK

- 1. History and Foundations of the Concept
 - 1.1. Origin of the Gaia Hypothesis
 - 1.2. Daisyworld and Feedback Mechanisms
 - 1.3. Development of the Gaia Theory
- 2. The Basis of Environmental Regulation
 - 2.1. A Hierarchy of Feedbacks
 - 2.2. Examples from Daisyworld
 - 2.3. Regional Examples in the Real World
- 3. Case Studies of Regulation of Biogeochemical Cycles
 - 3.1. Regulation of the Nutrient Balance of the Ocean
 - 3.2. Atmospheric Oxygen Regulation
- 4. Other Areas of Recent Research
 - 4.1. Cycling Ratios
 - 4.2. Extending Daisyworld
 - 4.3. Ice age Cycles
 - 4.4. Human Perturbation
 - 4.5. Lifespan of the Biosphere
- 5. Future Directions
- 6. Conclusion

The Climate System

204

A. Henderson-Sellers, Director Environment, Australian Nuclear Science and Technology Organization, Sydney

- 1. Earth's Climate
 - 1.1. Introduction
 - 1.2. Earth as a Planet
 - 1.3. Forcing and Feedbacks
 - 1.3.1. Snow and Ice: A Surface Feedback
 - 1.3.2. Water Vapor: An Atmospheric Feedback
 - 1.3.3. Biogenic Feedbacks in the Climate System
 - 1.3.4. Combining Climate System Feedbacks
- 2. Past Climates
 - 2.1. Spectrum of Past Variability
 - 2.2. Solar Variations
 - 2.2.1. Milankovitch
 - 2.2.2. Sunspots and Shorter Period Solar Irradiance Changes
 - 2.3. Climate of the mid-Holocene (6000 yr BP)
 - 2.4. The Last Glacial Maximum (21 000 yr BP)
- 3. Climate Models
 - 3.1. Models as Tools
 - 3.2. Climate Model Hierarchy
 - 3.3. Global Climate Models (GCMs)

- 3.4. Earth System Models of Intermediate Complexity (EMICs)
- 3.5. Simulating Interactions in the Climate System
- 4. Human Impact on Climate
 - 4.1. Stratospheric Ozone Depletion
 - 4.2. Global Warming
 - 4.3. Land-surface Forcing and Its Effects
- 5. Sustaining Climate

NASA Earth Science Enterprise: A New Window On Our World

251

G.R. Asrar, G.J. Williams and P. Morel, NASA Headquarters, Washington, D.C., USA

- 1. Introduction
- 2. A Scientific Vision—The Earth as a System
- 3. A View From Above—Characterizing the Earth System
 - 3.1. Biosphere–Atmosphere Interactions
 - 3.2. Ocean–Atmosphere Interactions
 - 3.3. Climate–Chemistry Interactions
 - 3.4. Polar Regions–Atmosphere Interactions
- 4. Taking It All In—Understanding the Earth System
- 5. Getting There From Here—Predicting Earth System Change
- 6. Conclusion

Biodiversity And Functionality Of Aquatic Ecosystems

268

David M. Paterson, School of Biology, Gatty Marine Laboratory, University of St Andrews, UK.

- 1. Why research on aquatic systems has lagged behind
- 2. The nature of aquatic habitats
 - 2.1. Fresh water ecosystems
 - 2.2. Marine ecosystems
 - 2.3. Transitional waters
- 3. Species-specific functional roles
- 4. Species-combined functionality: Functional groups
- 5. The problem of functional plasticity
- 6. Direct and indirect measure of functionality
- 7. Threats to biodiversity and ecosystem function
- 8. Future challenges and directions

Types Of Environmental Models

283

R. A. Letcher and A. J. Jakeman, Centre for Resource and Environmental Studies, The Australian National University, Australia

- 1. Introduction
- 2. Common Features of Environmental Systems
 - 2.1. Complex Nonlinear Interactions
 - 2.2. Heterogeneity of System Features
 - 2.3. Incompatible Scales
 - 2.4. Inaccessible or Unobservable System Processes
- 3. Types of Environmental Systems
 - 3.1. Hydrological Systems
 - 3.1.1. Surface Water Systems
 - 3.1.2. Subsurface Water Systems
 - 3.1.3. Coastal Systems
 - 3.2. Ecological Systems
 - 3.2.1. Agricultural Systems
 - 3.2.2. Wildlife Systems

- 3.3. Climatic Systems
 - 3.3.1. Oceans
 - 3.3.2. Atmosphere
 - 3.3.3. Land Surface
- 4. Uses and Objectives of Environmental Models
- 5. Types of Models
 - 5.1. Empirical (or Statistical) Models
 - 5.2. Conceptual (or Lumped Parameter) Models
 - 5.3. Process- (or Physics-) Based Models
- 6. Modeling Environmental Systems
 - 6.1. Hydrological Systems
 - 6.1.1. Surface Water Systems
 - 6.1.2. Subsurface Hydrological Systems
 - 6.1.3. Coastal Systems
 - 6.2. Ecological Systems
 - 6.2.1. Agricultural and Pastoral Systems
 - 6.2.2. Wildlife Systems
 - 6.3. Climatic Systems
 - 6.3.1. Global Scale Systems
 - 6.3.2. Regional Scale Systems
- 7. Future Directions in Environmental Modeling

Global Ecology 307

R. J. Huggett, Reader in Geography, University of Manchester, Manchester, UK

- 1. Introduction
 - 1.1. The Need for Global Ecology
 - 1.2. What is the Global Ecosystem?
 - 1.2.1. The Earth System
 - 1.2.2. Gaia
 - 1.3. The Tools of Global Ecology
- 2. Mapping and Measuring the Global Ecosystem
 - 2.1. The State of the Earth System
 - 2.2. Flows in the Earth System
 - 2.2.1. Toxic Chemical Flows
 - 2.2.2. Sediment Flows
 - 2.2.3. Carbon Flows
 - 2.3. The Earth System in the Past
- 3. Modelling the Global Ecosystem
 - 3.1. Tutorial Models
 - 3.2. Comprehensive Models
 - 3.3. Intermediate Complexity Models
- 4. Miniaturizing the Biosphere
 - 4.1. Artificial Biospheres
 - 4.2. Semi-artificial Biosphere Experiments
- 5. Managing the Global Ecosystem

Land Cover, Land Use And The Global Change

333

Willy Verheye, National Science Foundation Flanders/Belgium and Geography Department University Gent, Belgium

- 1. Introduction
- 2. Terminology and Other Sources of Confusion
 - 2.1. Land
 - 2.2. Land Cover and Land Use
 - 2.3. Research Organizations and Programs

- 3. Problems related to Land Cover Classification and Research
- 4. Land Cover and Land Use Changes
 - 4.1. Data Collection
 - 4.2. Monitoring Techniques
 - 4.3. Agents of Change
 - 4.4. Types of Change
 - 4.5. Results of Change
- 5. Global change
 - 5.1. Deforestation, Desertification and the Expansion of Agricultural Land
 - 5.2. Climatic Change
 - 5.3. Loss of Biodiversity
 - 5.4. Population Density and Urban Development
 - 5.5. Air Pollution and Environmental Side Effects
 - 5.6. Effects of Acid Rain on European Forests
- 6. Long-term Political Impacts of Global Change

Biogeochemical Cycling Of Macronutrients

369

Ochiai E-I., Vancouver, Canada

- 1. Introduction
- 2. The Elemental Compositions of the Atmosphere, Hydrosphere, and Lithosphere
- 3. Life's Need for Elements—Logic of Life on Earth
- 4. Elemental Compositions of Humans, Sea Animals, and Plants
- 5. Correlation in Elemental Composition between the Environment and Humans
- 6. Geochemical Cycling of Elements and the Contribution of the Biosphere
- 7. Biogeochemical Cycling of Carbon
 - 7.1. Notes on the Diagrams of the Biogeochemical Cycling of Elements
- 8. Biogeochemical Cycling of Oxygen
- 9. Biogeochemical Cycling of Sulfur
- 10. Biogeochemical Cycling of Nitrogen
- 11. Biogeochemical Cycling of Phosphorus
- 12. Biogeochemical Cycling of Calcium
- 13. Biogeochemical Cycling of Sodium, Potassium, and Magnesium

Hydrology 394

Olga Eugenia Scarpati , National Council of Scientific Research and La Plata National University, Argentina.

- 1. Definitions.
- 2. Scope of Hydrology.
- 3. The Hydrological Cycle.
- 4. Historical Background.
- 5. Main Components Of The Hydrological Cycle.
 - 5.1. Precipitation.
 - 5.2. Interception.
 - 5.3. Infiltration.
 - 5.4. Evapotranspiration.
 - 5.5. Soil moisture
 - 5.6. Subsurface flow.
 - 5.7. Groundwater.
 - 5.8. Runoff and stream discharge.
- 6. Water Quality.
- 7. Paleohydrology.
 - 7.1. Paleohydrological techniques
 - 7.2. Paleohydrologic techniques for discharge estimation
 - 7.3. Estimating long-term discharge

- 7.4. Estimating instantaneous peak discharge
- 7.5. Paleohydrologic techniques used to date floods and droughts
- 8. Extreme Hydrological Events: Floods And Drought.
- 9. Impact of Human Activities And Climate Change on the Hydrological Cycle.
 - 9.1. Methods for estimating the hydrological effects of climate change
- 10. Final Consideration.

Index	429
About EOLSS	435