CONTENTS

ORGANIC AND BIO-MOLECULAR CHEMISTRY

Organic and Bio-molecular Chemistry Volume 1

e-ISBN: 978-1-905839-98-8 ISBN : 978-1-84826-998-9

No. of Pages: 384

Organic and Bio-molecular Chemistry Volume 2

e-ISBN: 978-1-905839-99-5 ISBN: 978-1-84826-999-6

No. of Pages: 434

For more information of e-book and Print Volume(s) order, <u>please click</u>

<u>here</u>

Or contact : eolssunesco@gmail.com

CONTENTS

VOLUME I

Organic and Bio-molecular Chemistry

1

Francesco Nicotra, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy

- 1. Introduction
- 2. The Carbon Atom
 - 2.1. The Carbon Atom Building Blocks: Hybridizations
 - 2.2. Single and Multiple Bonds
- 3. Structure of organic compounds
 - 3.1. Graphical Representation of the Structures of Organic Compounds
 - 3.2. Different Shapes that a Molecule can assume: Conformations
 - 3.3. Asymmetry of some Organic Molecules: Chirality and Stereoisomers
- 4. Classification of organic compounds, the functional groups
 - 4.1. Alkanes
 - 4.2. Alkenes
 - 4.3. Alkynes
 - 4.4. Aromatic Hydrocarbons
 - 4.5. Haloalkanes
 - 4.6. Alcohols
 - 4.7. Thiols
 - 4.8. Ethers
 - 4.9. Thioethers, Disulfides and Trisulfides
 - 4.10. Amines
 - 4.11. Aldehydes and Ketones
 - 4.12. Carboxylic Acids, Esters and Amides
- 5. Attractive interactions and molecular recognition
- 6. Reactivity of organic compounds
- 7. Molecules of life
 - 7.1. Carbohydrates
 - 7.2. Amino Acids, Peptides and Proteins
 - 7.3. Nucleic Acids
 - 7.4. Lipids
 - 7.4.1. Fats, Oils and Waxes
 - 7.4.2. Phospholipids and Glycolipids
 - 7.4.3. Terpenoids
 - 7.4.4. Fat-soluble Vitamins
 - 7.4.5. Steroids
- 8. Organic compounds in the market
 - 8.1. Dyes
 - 8.2. Compounds for Health Care
 - 8.3. Compounds for Food Industry
 - 8.4. Polymers
- 9. Isolation, purification and analysis of organic compounds
- 10. Conclusions

Organic Substances and Structures, Nomenclature of Organic Compounds

56

Luigi A. Agrofoglio, ICOA UMR CNRS 6005, University of Orleans – France Patrick Rollin, ICOA UMR CNRS 6005, University of Orleans – France

- 1. Type(s) of Nomenclature Operations
 - 1.1. Substitutive Operation
 - 1.2. Replacement Operation

- 1.3. Additive Operation
- 1.4. Conjunctive Operation
- 1.5. Subtractive Operation
- 1.6. Ring Formation or Cleavage
- 2. General Rules
 - 2.1. Capitalized and Italic
 - 2.2. Numbers of Position
 - 2.3. Punctuation
- 3. Parent Name
 - 3.1. Alkanes
 - 3.2. Unsaturated Alkanes
 - 3.3. Substituent Prefix Names Derived from Parent Hydrides
- 4. Functional Groups
- 5. Specific Classes of Compounds
 - 5.1. Organometallic Compounds
 - 5.2. Halogen Compounds
 - 5.3. Nitrogen Compounds
 - 5.3.1. Amines and Imines
 - 5.3.2. Amides and Imides
 - 5.3.3. Nitrile, Isocyanide and their Derivatives
 - 5.3.4. Nitro and Nitroso Compounds
 - 5.3.5. Azo, azoxy, diazo, and related compounds
 - 5.3.6. Azides
 - 5.4. Hydroxy Compounds and Analogues
 - 5.4.1. Alcohols and Phenols
 - 5.4.2. Substituent Prefixes Derived from Alcohols, Phenols, and their Analogues
 - 5.4.3. Salts
 - 5.4.4. Ethers
 - 5.4.5. Cyclic Ethers
 - 5.4.6. Aldehydes
 - 5.4.7. Ketones
 - 5.4.8. Ketenes
 - 5.4.9. Acetals, Hemiacetals, Acylals, and their Analogues
 - 5.5. Nitrogenous Derivatives of Carbonyl Compounds
 - 5.6. Acids and Derivatives
- 6. Numbering of Some Heterocyclic Rings
- 7. Numbering of Multiple Ring Systems
- 8. Name Construction
 - 8.1. Rules
 - 8.2. Examples

Stereochemistry 85

Franco Cozzi, Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, Italy

- 1. Introduction
- 2. Symmetry
 - 2.1. Molecular Models and Symmetry Evaluation
 - 2.2. Symmetry Elements and Symmetry Operations
 - 2.3. Point Groups
- 3. Chirality
 - 3.1. Pairwise Relationships between Isomeric Molecules
 - 3.2. Topicity Relationships among Atoms and Groups of Atoms in Molecules
 - 3.3. Chirotopicity
- 4. Stereogenicity
 - 4.1. On the Distinction between Chirality and Stereogenicity
- 5. Conformation and configuration

- 5.1. Conformation
- 5.2. Configuration
- 5.3. Some Considerations on the Use of the Terms Conformation and Configuration
- 6. Configuration descriptors
- 7. Dependence of the properties of chiral molecules on the enantiomeric composition
 - 7.1. Racemic Forms and Enantiomerically Pure Compounds
 - 7.2. Optical Activity
 - 7.3. Racemization
- 8. How to obtain steroisomerically pure compounds
 - 8.1. Separations
 - 8.2. Stereoselective Transformations
 - 8.2.1. Reactions Involving Chiral Non-racemic Substrates and Achiral Reagents
 - 8.2.2. Reactions Involving Achiral Substrates and Chiral Non-racemic Reagents
 - 8.2.3. Reactions Involving Chiral Substrates and Chiral Reagents
 - 8.2.3.1. Kinetic Resolution
 - 8.2.3.2. Multiple Stereoselection

Synthetic Organic Chemistry

129

Francesco Nicotra, Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy

- 1. Introduction
 - 1.1. Definition and Story of Synthetic Organic Chemistry
 - 1.2. Target Oriented Synthesis
 - 1.3. Method Oriented Synthesis
- 2. Synthetic Strategy
 - 2.1. Retrosynthetic Analysis
 - 2.2. Disconnections
 - 2.2.1. One Functional Group Disconnections
 - 2.2.2. Two Functional Group Disconnections
 - 2.2.2.1. Disconnections of 1,2 Dioxygenated Structures
 - 2.2.2.2. Disconnections of 1,3 Dioxygenated Structures
 - 2.2.2.3. Disconnections of 1,4 Dioxygenated Structures
 - 2.2.2.4. Disconnections of 1,5 Dioxygenated Structures
 - 2.2.2.5. Disconnections of 1,6 Dioxygenated Structures
- 3. Protection and Deprotection
 - 3.1. Temporary and Permanent Protective Groups
 - 3.2. Protection of Alcohols
 - 3.2.1. Esters
 - 3.2.2. Ethers
 - 3.2.3. Silyl Ethers
 - 3.2.4. Acetals
 - 3.2.5. Protection of Diols
 - 3.3. Protection of Amines
 - 3.3.1. Carbamates
 - 3.3.2. Amides
 - 3.3.3. Azides
 - 3.4. Protection of Aldehydes and Ketones
 - 3.5. Protection of Carboxylic acids
- 4. Control of Stereochemistry
 - 4.1. The Chiral Pool Approach
 - 4.2. Stereoselective Transformation
 - 4.2.1. Chiral Auxiliary
 - 4.2.2. Chiral Catalyst
 - 4.2.3. Enzymes as Chiral Catalysts
- 5. The Convergent Strategy
- 6. Solid Phase Synthesis

- 6.1. Solid Supports
- 6.2. Linkers and Spaces
 - 6.2.1. Acid-labile Linkers
 - 6.2.2. Base-labile Linkers
 - 6.2.3. Linkers Cleaved by Oxidation
 - 6.2.4. Photo Cleavable Linkers
 - 6.2.5. Silicon Linkers
 - 6.2.6. Metal-Assisted Cleavages
- 7. Combinatorial Synthesis
- 8. Environmental Friendly Synthetic Procedures
 - 8.1. Reaction Media
 - 8.2. Excess of Reagents
 - 8.3. Atomic Economy
- 9. Conclusions

Organic Chemical Reactions

168

Alessandro Abbotto, Department of Materials Science, University of Milano-Bicocca, Italy

- 1. Introduction
- 2. The Organic Reaction
 - 2.1. Chemical Reaction Notation: Equilibrium Arrows. Reactants and Products
 - 2.2. Mechanisms of Organic Reactions: The Arrow Notation
 - 2.3. Thermodynamics and Kinetics: Reaction Equilibrium and Reaction Rate
 - 2.4. Ionic Reactions
 - 2.4.1. Nucleophiles and Electrophiles
 - 2.5. Acids and Bases
 - 2.5.1. Bröensted Theory
 - 2.5.2. Lewis Theory
 - 2.5.3. Hard and Soft Acids and Bases
 - 2.6. Reactive Intermediates
 - 2.7. Product Selectivity
- 3. Classification of Organic Reactions
 - 3.1. Addition
 - 3.1.1. Electrophilic Addition
 - 3.1.2. Nucleophilic Addition
 - 3.2. Elimination
 - 3.3. Substitution
 - 3.3.1. Aliphatic Nucleophilic Substitution
 - 3.3.2. Aromatic Electrophilic Substitution
 - 3.3.3. Aromatic Nucleophilic Substitution
 - 3.4. Oxidation and Reduction
 - 3.5. Rearrangements
 - 3.6. Pericyclic Reactions

Organic Chemistry and Biological Systems -Biochemistry

223

Marina Lotti, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy

- 1. From Molecules to Living Systems: Complexity is Obtained from Simple Building Blocks
- 2. Amino Acids and Proteins
 - 2.1. Proteogenic Amino Acids
 - 2.2. Non Proteinogenic Amino Acids
 - 2.3. Amino Acid Polymers: Proteins. Their Structure and Function
 - 2.3.1. Proteins Folding and Structure
 - 2.3.2. Proteins Function and Regulation
- 3. Nucleotides and nucleic acids: information, energy transport, catalysis
 - 3.1. Chemical Structures of Nucleotides

- 3.2. Nucleotide Polymers: RNA and DNA
 - 3.2.1. The Flow of Genetic Information
 - 3.2.2. DNA: Storage and Transmission of Information
 - 3.2.3. RNA: Expression of Information and Catalysis
- 3.3. Nucleotides Derivatives and Coenzymes
- 4. Sugars: Energy, Structures, Modulation of Proteins Properties
 - 4.1. Monosaccharides and Polysaccharides
 - 4.2. Structural Support and Intracellular Storage of Fuel for Cell Metabolism
 - 4.3. Effects of Glycans on Glycoproteins Properties
 - 4.4. Sugars as Sources of Energy and Metabolic Intermediates
- 5. Lipids: Energy, Membranes, Protein Targeting and Signal Transduction
 - 5.1. Structures of Lipids Common in Biochemistry
 - 5.2. Lipids in Cell Metabolism
 - 5.3. Lipids as the Constituents of Cell Membranes
 - 5.4. Lipid Tails Target Proteins to Membranes

Chemistry of Natural Compounds

255

Laura Cipolla, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy

- 1. Introduction
- 2. Chemistry of natural products: a general perspective
 - 2.1. Alkylation Reactions
 - 2.1.1. Nucleophilic Substitution
 - 2.1.2. Electrophilic Addition
 - 2.2. Wagner-Meerwein Rearrangements
 - 2.3. Aldol and Claisen Reactions
 - 2.4. Imine Formation and the Mannich Reaction
 - 2.5. Transamination Reactions
 - 2.6. Decarboxylation reactions
 - 2.6.1. Decarboxylation of α-amino Acids
 - 2.6.2. Decarboxylation of β-keto Acids
 - 2.6.3. Decarboxylation of α-keto Acids
 - 2.7. Oxidations and Reductions
 - 2.7.1. Dehydrogenases
 - 2.7.2. Oxidases
 - 2.7.3. Oxygenases
 - 2.7.4. Amine Oxidases
 - 2.8. Carbohydrate Processing Enzymes: Glycosidases and Glycosyl Transferases
- 3. Lipids
 - 3.1. Hydrolyzable lipids
 - 3.1.1. Waxes
 - 3.1.2. Triglycerides
 - 3.1.3. Phospholipids
 - 3.2. Non-hydrolyzable lipids
 - 3.2.1. Fat-soluble Vitamins
 - 3.2.2. Eicosanoids
 - 3.2.3. Terpenoids
 - 3.2.4. Steroids
- 4. Amino Acids, Peptides and Proteins
 - 4.1. Amino Acids: Structural Features and Acid-base Behavior
 - 4.2. Amino Acid Biosynthesis
 - 4.3. Peptides and Proteins
 - 4.3.1. Ribosomal Biosynthesis of Peptides and Proteins
 - 4.3.2. Nonribosomal Biosynthesis of Peptides and Proteins
 - 4.4. Relevant Peptides and Proteins
 - 4.4.1. Hormones
 - 4.4.2. Interferons

- 4.4.3. Opioid Peptides
- 4.4.4. Enzymes
- 5. Nucleosides, nucleotides and nucleic acids
 - 5.1. Purine Nucleotides Biosynthesis
 - 5.2. Pirimidine Nucleotides Biosynthesis
- 6. Carbohydrates
 - 6.1. Monosaccharides
 - 6.2. Disaccharides, Oligosaccharides, Polysaccharides and Carbohydrate Processing Enzymes
 - 6.3. Glycoconiugates
 - 6.3.1. Glycoproteins
 - 6.3.2. Glycolipids

Index 321

About EOLSS 327

VOLUME II

Medicinal Chemistry

Fulvio Gualtieri, Department of Pharmaceutical Sciences, University of Florence, Italy

- 1. Introduction
 - 1.1. Definition of a Drug
 - 1.2. Classification of Drugs
 - 1.3. Definition of Medicinal Chemistry
- 2. From Bioactive Molecules to Drugs
 - 2.1. Pharmacokinetics: Absorption, Distribution, Metabolism, Escretion (ADME)
 - 2.2. Toxicity (T)
 - 2.3. Impact of Absorption, Distribution, Metabolism, Escretion, Toxicity (ADMET) on Drug Design and Development
- 3. The Basis for Drug Action
 - 3.1. Mechanism of Action of Drugs
 - 3.2. Drug Targets
 - 3.3. Preclinical Evaluation of Drug Activity
- 4. Drug Discovery and Development
 - 4.1. Drug Design and Development: in Silico Studies
 - 4.2. Drug Design: Lead Identification
 - 4.2.1. Existing Drugs
 - 4.2.2. Natural Compounds
 - 4.2.3. Serendipity
 - 4.2.4. Systematic Screening
 - 4.2.5. Combinatorial Chemistry
 - 4.2.6. Rational Design
 - 4.3. Drug Development: Lead Optimization
 - 4.3.1. Isosteric Replacement
 - 4.3.2. Molecular Simplification
 - 4.3.3. Molecular Complication
 - 4.3.4. Electronic Modulation
 - 4.3.5. Steric Modulation
 - 4.3.6. Derivatization (Prodrugs)
- 5. Clinical Evaluation
- 6. Industrial Drug Development
- 7. Conclusions

1

Chemistry of Nutraceutics, Flavors, Dyes and Additives

Barbara La Ferla, University of Milano Bicocca., Milan, Italy

- 1. Introduction
- 2. Flavors
 - 2.1. Natural Flavors
 - 2.1.1. Flavors derived from Lipid Catabolism
 - 2.1.2. Flavors of the Terpene Family
 - 2.1.3. Flavors derived from Amino Acids Catabolism
 - 2.2. Artificial Flavors
- 3. Dyes
 - 3.1. Natural Colorings
 - 3.1.1. Carotenoids
 - 3.1.2. Anthocyanins
 - 3.1.3. Chlorophyll
 - 3.1.4. Betalaines
 - 3.1.5. Carminic Acid and Curcumin
 - 3.2. Synthetic Dyes
- 4. Additives
 - 4.1. Sweeteners or Edulcorants
 - 4.1.1. Nutritive Sweeteners
 - 4.1.2. Non-nutritive Sweeteners
 - 4.2. Preservatives
 - 4.2.1. Main Food Spoilage
 - 4.2.2. Antioxidants
 - 4.2.3. Antimicrobials
 - 4.3. Emulsifiers and Stabilizers
- 5. Nutraceutics
 - 5.1. Flavonoids
 - 5.2. Polyunsaturated Fatty Acids (PUFAs)
 - 5.3. Amino Acids
 - 5.4. Vitamins

Computational Organic Chemistry

86

42

Giuseppe Zampella, Department of Biotechnology and Biosciences. University of Milano-Bicocca, Italy Luca De Gioia, Department of Biotechnology and Biosciences. University of Milano-Bicocca, Italy

- 1. Introduction
- Computational Approaches based on Classical Physics: Molecular Mechanics and Molecular Dynamics
 - 2.1. Molecular Mechanics
 - 2.2. Molecular Dynamics
- 3. Molecular Orbitals Theory and its Hartree-Fock Implementation
 - 3.1. Post Hartree-Fock Methods
 - 3.1.1. Configuration Interaction Theory (CI)
 - 3.1.2. Perturbation Methods
- 4. Density functional theory (DFT)
 - 4.1. Kohn-Sham (KS) Implementation
- 5. Semiempirical Methods

Organic Photochemistry

116

 $Antonio\ Papagni,\ Department\ of\ Materials\ Science,\ University\ of\ Milano-Bicocca,\ Milano,\ Italy.$

- 1. Introduction
- 2. Photo-physics: Interaction of Light with Matter and Photostimulated Processes
 - 2.1. Interaction with Atoms

 $@Encyclopedia\ of\ Life\ Support\ Systems\ (EOLSS)\\$

vii

- 2.2. Interaction with Molecules
- 2.3. Photo-physical Processes
- 3. Photo-chemistry
 - 3.1. Photo-chemical Processes
 - 3.2. Organic Photostimulated Reactions
 - 3.2.1. Dissociation into Radicals
 - 3.2.2. Dissociation into Ions or "Internal" Electron Transfer
 - 3.2.3. Intramolecular rearrangement
 - 3.2.4. Photo-isomerization
 - 3.2.5. Hydrogen Atom Abstraction
 - 3.2.6. Photo-dimerization or Photo-addition
 - 3.2.7. Photo-sensitized Reactions
 - 3.2.8. Photo-ionization Reactions
 - 3.3. Miscellaneous
 - 3.3.1. Photo-reactivity of Aromatic Compounds
 - 3.3.2. Photo-chemistry of Diazo- and Azido Compounds
 - 3.3.3. Photo-cleavable Protecting Groups
 - 3.3.4. Photo-polimerization
 - 3.3.5. Chemo-luminescence
- 4. Technical and Experimental Aspects
- 5. Concluding Remarks

Organometallic Chemistry

203

Sandro Cacchi, Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi "La Sapienza", P. le A. Moro 5, 00185 Rome, Italy

- 1. Introduction
- 2. Organometallic Compounds of the Group IA and IIA
 - 2.1. Organolithium Compounds
 - 2.1.1. Preparation of Organolithium Compounds
 - 2.1.2. Reactions of Organolithium Compounds
 - 2.1.2.1. Reactions with Carbon Acids
 - 2.1.2.2. Reactions with Alkylating Agents
 - 2.1.2.3. Reactions with Carbonyl Compounds
 - 2.2. Organomagnesium Compounds
 - 2.2.1. Preparation of Organomagnesium Compounds
 - 2.2.2. Reactions of Organomagnesium Compounds
 - 2.2.2.1. Formation of Carbon-Carbon Bonds
 - 2.2.2.2. Formation of Carbon-Hydrogen Bonds
 - 2.2.2.3. Formation of Carbon-Heteroatom Bonds
 - 2.2.2.3.1. Formation of Carbon-Nitrogen Bonds
 - 2.2.2.3.2. Formation of Carbon-Phosphorus Bonds
 - 2.2.2.3.3. Formation of Carbon-Oxygen Bonds
 - 2.2.2.3.4. Formation of Carbon-Sulfur Bonds
 - 2.2.2.3.5. Formation of carbon-halogen bonds
 - 2.3. Organozinc Compounds
 - 2.3.1. Preparation of Organozinc Compounds
 - 2.3.2. Reactions of Organozinc Compounds
 - 2.3.2.1. Reactions with Carbonyl Compounds
 - 2.3.2.2. Reactions with Alkenes
- 3. Transition Metal-based Organometallic Compounds
 - 3.1. Organocopper Compounds
 - 3.1.1. Preparation of Organocuprate Reagents
 - 3.1.2. Reactions of Organocuprate Reagents
 - 3.1.2.1. Reactions with Alkylating Agents
 - 3.1.2.2. Reactions with Carbonyl Compounds
 - 3.1.2.3. Reactions with α,β-unsaturated Carbonyl Compounds

- 3.1.3. Copper-Catalyzed Reactions
- 3.2. Palladium-catalyzed Reactions
 - 3.2.1. Pd(II) and Pd(0)
 - 3.2.2. Pd(II)-catalyzed Reactions
 - 3.2.2.1. Pd(II)-catalyzed Reaction of Alkenes
 - 3.2.2.2. Pd(II)-catalyzed Reaction of Alkynes
 - 3.2.2.3. Pd(II)-catalyzed Reaction of Arenes
 - 3.2.3. Pd(0)-catalyzed Reactions
 - 3.2.3.1. The Heck Reaction
 - 3.2.3.2. The Tsuji-Trost Reaction
 - 3.2.3.3. Carbonylation Reactions
 - 3.2.3.4. The Cross-coupling Reactions
 - 3.2.3.4.1. The Negishi Cross-coupling
 - 3.2.3.4.2. The Stille Cross-coupling
 - 3.2.3.4.3. The Suzuki Cross-coupling
 - 3.2.3.4.4. The Sonogashira Cross-coupling
 - 3.2.3.5 The Reaction of Aryl Halides (or Pseudo Halides) with Non-organometallic Nucleophiles
- 4. Organoboranes
 - 4.1. Substitution of the C-B Bond with a C-O Bond
 - 4.2. Substitution of the C-B Bond with a C-N Bond
 - 4.3. Substitution of the C-B Bond with a C-halogen Bond
 - 4.4. Substitution of the C-B Bond with a C-C Bond
 - 4.5. Substitution of the C-B Bond with a C-H Bond

Polymer Chemistry and Environmentally Degradable Polymers

260

Elisabetta Ranucci, Department of Organic and Industrial Chemistry, University of Milan, Italy

- 1. Introduction
- 2. General Structure of Polymers
 - 2.1. Basic Definitions
 - 2.2. Molecular Weights and Molecular Weight Distributions
 - 2.3. Regioisomery and Stereoregularity
 - 2.4. Primary, Secondary, and Tertiary Structure
 - 2.5. Crystalline and Amorphous Polymers
- 3. Synthesis of Polymers
 - 3.1. Step-wise Polymerization
 - 3.1.1. Crosslinking by Step-wise Polymerization
 - 3.2. Chain Polymerization
 - 3.2.1. Radical Polymerization
 - 3.2.2. Ionic Polymerization
 - 3.2.2.1. Cationic Polymerization
 - 3.2.2.2. Anionic Polymerization
 - 3.2.3. Co-ordination Polymerization
- 3.3. Ring Opening Polymerization
- 4. Environmentally Degradable Polymers
 - 4.1. Environmental Problems Related to the use of Plastics
 - 4.2. Definition of Biodegradability and Compostability
 - 4.3. Environmentally Degradable Polymers
 - 4.4. Production of Plastics from Renewable Sources
 - 4.5. Biodegradable Oxidizable Polymers

Organic Spectroscopy

330

Mauro Andrea Cremonini, *Department of Food Science, University of Bologna, Italy* Giorgio Bonaga, *Department of Food Science, University of Bologna, Italy*

1.	Introduction

- 2. Nuclear Magnetic Resonance
 - 2.1. The Resonance Phenomenon
 - 2.2. Chemical Shift
 - 2.3. Chemical Equivalence and Signal Intensity
 - 2.4. A Simple ¹H-NMR Spectrum
 - 2.5. Coupling Constant
 - 2.6. Dependence of the Proton Coupling Constant on the Molecular Structure
 - 2.7. More Complex Spectra
 - 2.8. A Real Life ¹H-NMR Spectrum
 - 2.9. 2D Homonuclear Spectra
 - 2.10. ¹³C Spectra
 - 2.11. 2D Heteronuclear Spectra
- 3. Mass Spectrometry
 - 3.1. Brief Outline of the Technique
 - 3.1.1. Common Ionization Techniques
 - 3.1.2. Sensitivity and Resolution
 - 3.1.3. Ion analysis
 - 3.2. Mass Spectrum
 - 3.3. Isotope Content

About EOLSS

3.4. Fragmentation Pattern

Index 371

©Encyclopedia of Life Support Systems (EOLSS)

377